CS514: Intermediate Course
* in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Real-world time-critical
systems

S

= The challenge:

= Suppose | need to build a rapidly
responsive system

= | want to handle large scale
= | plan to use a modular architecture

= Can this be done in a web services
setting?

A “system of systems”

e Rl bl

= We use the term “system of systems”
or SoS to capture this concept

= Examples will help clarify the idea
= Basic structure:

Front
End

3 A “system of systems”
= Or might interconnect systems at
different data centers to give a
reasonably integrated “picture”

Front
End

< > Front
End

Examples: Amazon

g ampes

= Amazon would often use the front end
to build a web page for a user
= The back-end systems fill in content
= Product popularity
= Current inventory
= Great deals on related products

= Products other people who did a similar
search ultimately purchased...

Why is this “time critical”?

3y e

= Amazon is graded by quick accurate
response

= Good grade: You buy the book
= Bad grade: You use Google and shop
elsewhere
= For Amazon’s line of business, this SoS
configuration is as critical as it gets!

5 Akamai
= Corporate site controls a large number
of satellite systems

= Goal: Move content to be close to users
who are likely to access that content
= Time critical aspect: Akamai is paid by

hosts seeking to ensure snappy load
times for their web sites

Military example

L Tl A

= Team comes under fire, calls for help
= Commander needs to know

= What resources are available?

= What's the terrain

= Where have enemy forces been seen?

= Is there an evacuation option?
= ... and needs a fast response

Air Traffic Control Example

. Baniiabell

= New radar ping detected

= Track formation system should fit this to
existing tracks (or create a new one)

= Flight plan lookup should check for known
aircraft that might match this track

= Warnings system should check for
proximity rules

= Long term planner should schedule a
landing slot

Air Traffic Control Example

. Baaiiabell

= Also see issues from controller to
controller

= When A hands off to B need to ensure
continuous coverage

= And when centers talk to each other

= France has 5 ATC centers... Europe has
hundreds...

Issues? Let’s focus on scaling

g !

= Scalability allows us to handle more
load and also provides fault-tolerance

= Each service becomes a replicated group of
servers that cooperate

= They replicate data by multicasting
updates

= And the reads are load-balanced
= Issues are specific to time-criticality?

Tempest

g P

= Start with a standard
web services application

= Perhaps, builds web

pages for air traffic Ws front-end | —

controller

Services

/N
i

Castor 4/07

Tempest

3 oPest

= We'll scale it out by replicating the components...
and automate management, repair, adaptation even
when faults occur

e |
[Wsomens]

s s s v
s s | s e

Castor 4/07

Tempest

3 oPest

= Then interconnect data centers

.
s B
WS front-end

e
e £ e e <

0=
e el

~~

Castor 4/07

How to solve such problems?

3 WS

= Tools in our toolkit
= UDP multicast — very fast, unreliable
= RON - routes around problems, unreliable

= BitTorrent — receivers cooperate to offload
work from the sender

= Virtual synchrony — strong consistency
= Quorums — even stronger (but slower)
= CASD or Ricochet: real-time multicast

Too many choices!

3 o man

= Need to ask

= How strong does the consistency property
need to be for the application of interest?

= How harsh is the runtime environment?

= How critical is timing?

= |Is the system “safe” if the primitive is
unreliable?

3 How would Amazon answer?
= To guarantee fast response, they
bought lots of hardware
= ... now they damn well expect speedups!

= Selling a book that is actually out of
stock isn't a disaster

= Fast matters more than “real time” of
the provable, conservative kind

Best technology for Amazon?

g ot

= Probably something like Ricochet would
work best for them
= Gets the update through FAST

= Uses pro-active FEC to recover from likely
patterns of loss

= Background gossip mechanism repairs any
losses not caught by FEC

= How might inconsistency “look” to users?

3 Consistency in Tempest
= Recall that transactional services offer
strong data consistency model
= each read operation returns the result of the
latest write
= Tempest implements a weaker model called
sequential consistency
= every replica sees the operations on the same
data item in the same order

= order may be different than the order updates
were issued

Tempest Collections

I- Persistent service state = collection of

objects
= Each object (oby) is naturally
represented by the tuple{ Histoy;,
Pendingos;y
= Histis the state of the object
= current value or list of updates
= Pending is the set of updates that cannot
be applied yet
= applied when ordering consistent across

A Tempest Service

__
e

= sellCIBMT, 108
b = sell("IBM", 163)

Pending =
{C = buy(“1Bw",
D = buy("IBM", 53)

E = sell(1BM", 76) }

Pending M, 32)
{F = sell(“1BM", 81)
E = sell("IBM", 76) }

Hist=

= sell(1BM”, 108)

Replica 1 Replica 2

Pending =
{6 = buy("IBM”, 10) }

Replica 3

1 Two level implementation

= To do a read, load-balance on some
randomly picked component
= Access the persistent state of the collection

= To do a write
= Multicast the update with Ricochet.
= On arrival, update goes on “pending queue”
= Periodically, multicast an ordering to use

= Run a background gossip protocol to clean up any
lingering inconsistencies

Evaluation

"-l Oracle TimesTen

3
) =

s

Baseline: Same service using in memory database, and a transactional
ACID database engine

Evaluation

4 N

. K

Gontainars
Cluster

S— N

1

Tempest configuration: clients multicast requests to a group of processes
using Ricochet

Experiment

3 Penme

= clients issue requests at various rates

= request distributions read / write intensive
= startup phase, populate with 1024 objects
= request distribution uniform or zipf

= each client performs 10 requests/s

= results averaged over 10000 runs/client

Performance

o —

My B0 ()

- - TimeaTeniziph

Toigl; Barvia Intaraadm Tie)

Request latency - on left write intensive, on right read intensive

Delay to order pending updates

3y oo

01 0.2 03 0.4 0.5
Sequenra rale (s ks s)

‘E‘TDDCI

s 6000

Time spent i pendin
- B~ N 3
- 8 EEE E

Pending set residency time, update rate 1/200 ms

Recovery under load

y oy

L
2 =
. 5
£ =T
“ £ |
3, ga
Z £
E 5 o -
= ES L B
o
o 50 100 150 200 250 04 086 0B 1 12 14 16
Time %) Upetate rate / greesin radn rafn

Behavior of affected replicas during a 40 second disruption

Services characteristics

g et

o B a

- i\ ---[PLR K -
e | 1,

!” !- =!,.I----l-,_1‘_____‘1.—-"']"'._1
- S ECSNS T—

= = H w» » w & = = A

ndividual service response time. Left - services with small response time variance, right
arge.

PetStore

3

e pw cine o 18
Ciwerin e il 7 10 rR

Response time histogram. Left: services not replicated, right each service replicated 8
imes.

PetStore

= _

3

Left: 5 replicas, right: 8 replicas

Summary

& Etbielliieb/

= Tempest framework can support time
critical services
= Model matches what “Amazon wants”

= Developers need not worry about
scalability, fault-tolerance

= Tempest automatically adapts &
reacts to load fluctuations and failures

= Adding inter-datacenter features now

What would an Air Traffic
System want?

= Here, we need stronger consistency for
many purposes
= For example, system will hide any failure
without loss of timing properties

= And timing properties will be “extremely
good”

Replicated components

g

= Pipelined computation

@—O—a

= Transformed computation

- - -
O\@ -

3 Choice we saw last time
= Could use CASD

= Benefit: provable timing properties,
ordering, reliability

= Weakness: For high quality, very slow
= Could also consider Virtual Synchrony
= Benefit: Strong consistency

= Weakness: Fast, but can’'t guarantee
timing properties

More choices

g 0

= What about using consensus (Paxos)?

= Here we would get very strong lock-step
guarantees

= Even if a node fails, state it saw is
guaranteed to be correct

= But even slower

How would we pick?

p O

= Need to ask how application “balances”
requirements
= Actual situation for an ATC system?
= Consistency is extremely important
= Also want speed, but not necessarily real-
time of a provable kind
= Hence would look at Paxos versus Virtual
SYnchrony

Picking between Paxos and

g Vsync
= Virtual synchrony isn't safe enough!
= Issue is that if a controller is told “ok to
route plane X into sector Y”, we'll take an
action that can't be undone
= Hence Paxos guarantee is required
= Either use the actual Paxos algorithm

= Or use virtual synchrony in the “safe”
(flushed) mode

= Yes, this is slower... but it is also safer!

More practical questions

L Thahd ke

= How does one deal with requests in
chains of replicated components?

-
R D

= When A talks to B, B and B’ will each
see duplicated request from A and A’

Challenges of request
duplication

= Must be careful to ensure that A and A’
are deterministic!

= Threads, timers, reading the clock, looking

at the environment, even reading 1/0 from

multiple sources can all make a program
non-deterministic

= In this case A and A’ could deviate!
= Forces an unnatural coding style

Then....
- EL

= Suffices to number operations

= B and B’ expect duplicates but don’t
wait for them
= Take first incoming request
= Discard duplicate (if we get one)

5 Raises a question
= Suppose we are doing read-only requests
= Is it best to send a request ONCE?
= We can spread the load evenly

= But sometimes may hit a busy node and get a
long delay

= ...Or more than once?

= Loads the service more... but maybe reply comes
back sooner!

Generalized question

= For a system like Tempest
= How much should each service be

replicated to ensure best timing properties?

= Tradeoff: Overhead versus benefit from light
loads on queries

= Answer may vary from service to service
= How best to handle real-only requests

= How to handle a transient like a load surge
or a node failing

Summary

. Eihabbdbat

= Many real-world systems need time-
critical functionality

= In systems of systems, this is tricky!
= Forces tradeoffs: speed, versus consistency
= Stronger properties are usually slower...

but are genuinely safer!

= Smart designers are forced to really

think the issues through step-by-step!

