
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Real-world time-critical
systems

The challenge:
Suppose I need to build a rapidly
responsive systemp y
I want to handle large scale
I plan to use a modular architecture

Can this be done in a web services
setting?

A “system of systems”

We use the term “system of systems”
or SoS to capture this concept
Examples will help clarify the ideaExamples will help clarify the idea
Basic structure:

Front
End

Back end

Back end

Back end

A “system of systems”

Or might interconnect systems at
different data centers to give a
reasonably integrated “picture”reasonably integrated picture

Front
End

Back end

Back end

Back end

Front
End

Back end

Back end

Back end

Examples: Amazon

Amazon would often use the front end
to build a web page for a user
The back-end systems fill in contentThe back-end systems fill in content

Product popularity
Current inventory
Great deals on related products
Products other people who did a similar
search ultimately purchased…

Why is this “time critical”?

Amazon is graded by quick accurate
response

Good grade: You buy the bookGood grade: You buy the book
Bad grade: You use Google and shop
elsewhere

For Amazon’s line of business, this SoS
configuration is as critical as it gets!

2

Akamai

Corporate site controls a large number
of satellite systems
Goal: Move content to be close to usersGoal: Move content to be close to users
who are likely to access that content
Time critical aspect: Akamai is paid by
hosts seeking to ensure snappy load
times for their web sites

Military example

Team comes under fire, calls for help
Commander needs to know

What resources are available?What resources are available?
What’s the terrain
Where have enemy forces been seen?
Is there an evacuation option?

… and needs a fast response

Air Traffic Control Example

New radar ping detected
Track formation system should fit this to
existing tracks (or create a new one)g ()
Flight plan lookup should check for known
aircraft that might match this track
Warnings system should check for
proximity rules
Long term planner should schedule a
landing slot

Air Traffic Control Example

Also see issues from controller to
controller

When A hands off to B need to ensureWhen A hands off to B need to ensure
continuous coverage

And when centers talk to each other
France has 5 ATC centers… Europe has
hundreds…

Issues? Let’s focus on scaling

Scalability allows us to handle more
load and also provides fault-tolerance

Each service becomes a replicated group ofEach service becomes a replicated group of
servers that cooperate
They replicate data by multicasting
updates
And the reads are load-balanced

Issues are specific to time-criticality?

Tempest

Start with a standard
web services application
Perhaps builds web

Services

Castor 4/07

Perhaps, builds web
pages for air traffic
controller

WS front-end Services

Services

3

Tempest

We’ll scale it out by replicating the components…
and automate management, repair, adaptation even
when faults occur

Castor 4/07

when faults occur

WS front-end Services

Services

Services

WS front-end

WS front-end

WS front-end

WS front-end

Services

Services

Services

Services

Services

Services

Services

Services

Services

Tempest

Then interconnect data centers

Castor 4/07

WS front-end Services

Services

Services

WS front-end

WS front-end

WS front-end

WS front-end

Services

Services

Services

Services

Services

Services

Services

Services

Services

W S f r o n t - e n d S e r v ic e s

S e r v ic e s

S e r v ic e s

W S fr o n t - e n d

W S fr o n t - e n d

W S fr o n t - e n d

W S f r o n t - e n d

S e r v ic e s

S e r v ic e s

S e r v ic e s

S e r v ic e s

S e r v ic e s

S e r v ic e s

S e r v i c e s

S e r v i c e s

S e r v i c e s

W S f r o n t - e n d S e r v ic e s

S e r v ic e s

S e r v ic e s

W S fr o n t - e n d

W S fr o n t - e n d

W S fr o n t - e n d

W S f r o n t - e n d

S e r v ic e s

S e r v ic e s

S e r v ic e s

S e r v ic e s

S e r v ic e s

S e r v ic e s

S e r v i c e s

S e r v i c e s

S e r v i c e s

How to solve such problems?

Tools in our toolkit
UDP multicast – very fast, unreliable
RON – routes around problems unreliableRON routes around problems, unreliable
BitTorrent – receivers cooperate to offload
work from the sender
Virtual synchrony – strong consistency
Quorums – even stronger (but slower)
CASD or Ricochet: real-time multicast

Too many choices!

Need to ask
How strong does the consistency property
need to be for the application of interest?pp
How harsh is the runtime environment?
How critical is timing?
Is the system “safe” if the primitive is
unreliable?

How would Amazon answer?

To guarantee fast response, they
bought lots of hardware

now they damn well expect speedups!… now they damn well expect speedups!

Selling a book that is actually out of
stock isn’t a disaster
Fast matters more than “real time” of
the provable, conservative kind

Best technology for Amazon?

Probably something like Ricochet would
work best for them

Gets the update through FASTGets the update through FAST
Uses pro-active FEC to recover from likely
patterns of loss
Background gossip mechanism repairs any
losses not caught by FEC

How might inconsistency “look” to users?

4

Consistency in Tempest

Recall that transactional services offer
strong data consistency model

each read operation returns the result of the
latest write

Tempest implements a weaker model called
sequential consistency

every replica sees the operations on the same
data item in the same order
order may be different than the order updates
were issued

Tempest Collections
Persistent service state = collection of
objects
Each object (obj) is naturally

t d b th t l 〈Hi trepresented by the tuple〈Histobj,
Pendingobj〉

Hist is the state of the object
current value or list of updates

Pending is the set of updates that cannot
be applied yet

applied when ordering consistent across

A Tempest Service

A = sell(“IBM”, 108)

B = sell(“IBM”, 163)

C = buy(“IBM”, 32)

Hist =

TempestCollection

A = sell(“IBM”, 108)

B = sell(“IBM”, 163)

Hist =

Pending =

TempestCollection

Pending =
{ F = sell(“IBM”, 81)
E = sell(“IBM”, 76) }

Replica 1

g
{ C = buy(“IBM”, 32)
D = buy(“IBM”, 53)
E = sell(“IBM”, 76) }

Replica 2

A = sell(“IBM”, 108)

B = sell(“IBM”, 163)

Hist =

Pending =
{ G = buy(“IBM”, 10) }

C = buy(“IBM”, 32)

TempestCollection

Replica 3

Two level implementation

To do a read, load-balance on some
randomly picked component

Access the persistent state of the collection

To do a write
Multicast the update with Ricochet.
On arrival, update goes on “pending queue”
Periodically, multicast an ordering to use
Run a background gossip protocol to clean up any
lingering inconsistencies

Evaluation

Baseline: Same service using in memory database, and a transactional
ACID database engine

Evaluation

Tempest configuration: clients multicast requests to a group of processes
using Ricochet

5

Experiment

clients issue requests at various rates
request distributions read / write intensive
startup phase, populate with 1024 objectsstartup phase, populate with 1024 objects
request distribution uniform or zipf
each client performs 10 requests/s
results averaged over 10000 runs/client

Performance

Request latency - on left write intensive, on right read intensive

Both COTS options
were slow!

Tempest is much
faster and has

lower variance too

Delay to order pending updates

Pending set residency time, update rate 1/200 ms

Recovery under load

Behavior of affected replicas during a 40 second disruption

Services characteristics

Individual service response time. Left - services with small response time variance, right
large.

PetStore

Response time histogram. Left: services not replicated, right each service replicated 8
times.

6

PetStore

Left: 5 replicas, right: 8 replicas

Summary

Tempest framework can support time
critical services

Model matches what “Amazon wants”Model matches what Amazon wants

Developers need not worry about
scalability, fault-tolerance
Tempest automatically adapts &
reacts to load fluctuations and failures
Adding inter-datacenter features now

What would an Air Traffic
System want?

Here, we need stronger consistency for
many purposes

For example, system will hide any failureFor example, system will hide any failure
without loss of timing properties
And timing properties will be “extremely
good”

Replicated components

Pipelined computation

Transformed computation

Choice we saw last time

Could use CASD
Benefit: provable timing properties,
ordering, reliabilityg, y
Weakness: For high quality, very slow

Could also consider Virtual Synchrony
Benefit: Strong consistency
Weakness: Fast, but can’t guarantee
timing properties

More choices

What about using consensus (Paxos)?
Here we would get very strong lock-step
guaranteesg
Even if a node fails, state it saw is
guaranteed to be correct
But even slower

7

How would we pick?

Need to ask how application “balances”
requirements
Actual situation for an ATC system?Actual situation for an ATC system?

Consistency is extremely important
Also want speed, but not necessarily real-
time of a provable kind
Hence would look at Paxos versus Virtual
SYnchrony

Picking between Paxos and
Vsync

Virtual synchrony isn’t safe enough!
Issue is that if a controller is told “ok to
route plane X into sector Y”, we’ll take an p ,
action that can’t be undone

Hence Paxos guarantee is required
Either use the actual Paxos algorithm
Or use virtual synchrony in the “safe”
(flushed) mode
Yes, this is slower… but it is also safer!

More practical questions

How does one deal with requests in
chains of replicated components?

When A talks to B, B and B’ will each
see duplicated request from A and A’

A

A’

B

B’

C

C’

Challenges of request
duplication

Must be careful to ensure that A and A’
are deterministic!

Threads, timers, reading the clock, lookingThreads, timers, reading the clock, looking
at the environment, even reading I/O from
multiple sources can all make a program
non-deterministic
In this case A and A’ could deviate!

Forces an unnatural coding style

Then….

Suffices to number operations
B and B’ expect duplicates but don’t
wait for themwait for them

Take first incoming request
Discard duplicate (if we get one)

Raises a question

Suppose we are doing read-only requests
Is it best to send a request ONCE?

We can spread the load evenlyp y
But sometimes may hit a busy node and get a
long delay

…Or more than once?
Loads the service more… but maybe reply comes
back sooner!

8

Generalized question

For a system like Tempest
How much should each service be
replicated to ensure best timing properties?p g p p

Tradeoff: Overhead versus benefit from light
loads on queries
Answer may vary from service to service

How best to handle real-only requests
How to handle a transient like a load surge
or a node failing

Summary

Many real-world systems need time-
critical functionality
In systems of systems this is tricky!In systems of systems, this is tricky!

Forces tradeoffs: speed, versus consistency
Stronger properties are usually slower…
but are genuinely safer!

Smart designers are forced to really
think the issues through step-by-step!

