
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Using real-time

n Consider using a real-time operating system,
clock synchronization algorithm, and to
design protocols that exploit time

n Example: MARS system uses pairs of
redundant processors to perform actions
fault-tolerantly and meet deadlines. Has
been applied in process control systems.
(Another example: Delta-4)

Features of real-time
operating systems

n The O/S itself tends to be rather simple
n Big black boxes behave unpredictably

n They are structured in terms of “tasks”
n A task is more or less a thread
n But typically come with expected runtime,

deadlines, priorities, “interruptability ”, etc
n User decomposes application into task-like

component parts and then expresses goals in
a form that RTOS can handle

n Widely used on things like medical devices

RTOS can be beneficial

n Lockheed Martin
ATL timed CORBA
method invocations

n Variation in
response time was
huge with a normal
Linux OS

n When using a
Timesys RTOS the
variability is
eliminated!

Next add distributed protocols

n Given some degree of real-time
behavior in the platform…

n … goal is to offer distributed real-time
abstractions programmers can use

Real-time broadcast protocols

n Can also implement broadcast protocols that
make direct use of temporal information

n Examples:
n Broadcast that is delivered at same time by all

correct processes (plus or minus the clock skew)
n Distributed shared memory that is updated within

a known maximum delay
n Group of processes that can perform periodic

actions

2

A real-time broadcast

p0

p1

p2

p3

p4

p5

t
t+a t+b

*

*

*

*

*

Message is sent at time t by p0 . Later both p0 and p1 fail. But
message is still delivered atomically, after a bounded delay, and
within a bounded interval of time (at non-faulty processes)

A real-time distributed shared
memory

p0

p1

p2

p3

p4

p5

t
t+a t+b

At time t p0 updates a variable in a distributed shared memory.
All correct processes observe the new value after a bounded
delay, and within a bounded interval of time.

set x=3

x=3

Periodic process group:
Marzullo

p0

p1

p2

p3

p4

p5

Periodically, all members of a group take some action.
Idea is to accomplish this with minimal communication

The CASD protocols

n Also known as the “∆ -T” protocols
n Developed by Cristian and others at IBM, was

intended for use in the (ultimately, failed)
FAA project

n Goal is to implement a timed atomic
broadcast tolerant of Byzantine failures

Basic idea of the CASD
protocols

n Assumes use of clock synchronization
n Sender timestamps message
n Recipients forward the message using a

flooding technique (each echos the message
to others)

n Wait until all correct processors have a copy,
then deliver in unison (up to limits of the
clock skew)

CASD picture

p0

p1

p2

p3

p4

p5

t
t+a t+b

*

*

*

*

*

p0, p1 fail. Messages are lost when echoed by p2, p3

3

Idea of CASD

n Assume known limits on number of processes that
fail during protocol, number of messages lost

n Using these and the temporal assumptions, deduce
worst-case scenario

n Now now that if we wait long enough, all (or no)
correct process will have the message

n Then schedule delivery using original time plus a
delay computed from the worst-case assumptions

The problems with CASD

n In the usual case, nothing goes wrong, hence
the delay can be very conservative

n Even if things do go wrong, is it right to
assume that if a message needs between 0
and δms to make one hope, it needs [0,n* δ]
to make n hops?

n How realistic is it to bound the number of
failures expected during a run?

CASD in a more typical run

p0

p1

p2

p3

p4

p5

t
t+a t+b

*

*

*

*

*
*

... leading developers to employ more
aggressive parameter settings

p0

p1

p2

p3

p4

p5

t
t+a t+b

*

*
*

*

*
*

CASD with over-aggressive paramter settings
starts to “malfunction”

p0

p1

p2

p3

p4

p5

t
t+a t+b

*

all processes look “incorrect” (red) from time to time

*

*

*

CASD “mile high”

n When run “slowly” protocol is like a real-time
version of abcast

n When run “quickly” protocol starts to give
probabilistic behavior:
n If I am correct (and there is no way to know!)

then I am guaranteed the properties of the
protocol, but if not, I may deliver the wrong
messages

4

How to repair CASD in this
case?

n Gopal and Toueg developed an extension, but
it slows the basic CASD protocol down, so it
wouldn’t be useful in the case where we want
speed and also real-time guarantees

n Can argue that the best we can hope to do is
to superimpose a process group mechanism
over CASD (Verissimo and Almeida are
looking at this).

Why worry?

n CASD can be used to implement a distributed
shared memory (“delta-common storage”)

n But when this is done, the memory
consistency properties will be those of the
CASD protocol itself

n If CASD protocol delivers different sets of
messages to different processes, memory will
become inconsistent

Why worry?

n In fact, we have seen that CASD can do just
this, if the parameters are set aggressively

n Moreover, the problem is not detectable
either by “technically faulty” processes or
“correct” ones

n Thus, DSM can become inconsistent and we
lack any obvious way to get it back into a
consistent state

Using CASD in real
environments

n Would probably need to set the parameters
close to the range where CASD can
malfunction, but rarely

n Hence would need to add a self-stabilization
algorithm to restore consistent state of
memory after it becomes inconsistent

n Problem has not been treated in papers on
CASD

n pbcast protocol does this

Using CASD in real
environments

n Once we build the CASD mechanism how
would we use it?
n Could implement a shared memory

n Or could use it to implement a real-time state
machine replication scheme for processes

n US air traffic project adopted latter approach
n But stumbled on many complexities…

Using CASD in real
environments

n Pipelined computation

n Transformed computation

5

Issues?

n Could be quite slow if we use conservative
parameter settings

n But with aggressive settings, either process
could be deemed “faulty” by the protocol
n If so, it might become inconsistent

n Protocol guarantees don’t apply
n No obvious mechanism to reconcile states within

the pair

n Method was used by IBM in a failed effort to
build a new US Air Traffic Control system

Similar to MARS

n Research system done in Austria by Hermann
Kopetz
n Basic idea is that everything happens twice
n Receiver can suppress duplicates but is

guaranteed of at least one copy of each message
n Used to overcome faults without loss of real-time

guarantees

n MARS is used in the BMW but gets close to a
hardware f.tol. scheme

Many more issues….

n What if a process starts to lag?
n What if applications aren’t strictly deterministic?
n How should such a system be managed?
n How can a process be restarted?

n If not, the system eventually shuts down!

n How to measure the timing behavior of
components, including the network

FAA experience?

n It became too hard to work all of this
out

n Then they tried a transactional
approach, also had limited success

n Finally, they gave up!
n $6B was lost…
n A major fiasco, ATC is still a mess

Totem approach

n Start with extended virtual synchrony model
n Analysis used to prove real-time delivery

properties
n Enables them to guarantee delivery within

about 100-200ms on a standard broadcast
LAN

n Contrast with our 85us latency for Horus!

Tradeoffs between
consistency, time

n Notice that as we push CASD to run
faster we lose consistency

n Contrast with our virtual synchrony
protocols: they run as fast as they can
(often, much faster than CASD when it
is not malfunctioning) but don’t
guarantee real-time delivery

6

A puzzle

n Suppose that experiments show that 99.99%
of Horus or Ensemble messages are delivered
in 85us +/- 10us for some known maximum
load

n Also have a theory that shows that 100% of
Totem messages are delivered in about
150ms for reasonable assumptions

n And have the CASD protocols which work well
with ∆ around 250ms for similar LAN’s

A puzzle

n Question: is there really a difference between
these forms of guarantees?

n We saw that CASD is ultimately probabilistic.
Since Totem makes assumptions, it is also,
ultimately, probabilistic

n But the experimentally observed behavior of
Horus is also probabilistic

n ... so why isn’t Horus a “real-time” system?

What does real-time mean?

n To the real-time community?
n A system that provably achieves its deadlines

under stated assumptions

n Often achieved using delays!

n To the pragmatic community?
n The system is fast enough to accomplish our goals

n Experimentally, it never seems to lag behind or
screw up

Some real-time issues

n Scheduling
n Given goals, how should tasks be scheduled?
n Periodic, a-periodic and completely ad-hoc tasks

n What should we do if a system misses its
goals?

n How can we make components highly
predictable in terms of their real-time
performance profile?

Real-time today

n Slow transition
n Older, special purpose operating systems and

components, carefully hand-crafted for
predictability

n Newer systems are simply so fast (and can be
dedicated to task) that what used to be hard is
now easy

n In effect, we no longer need to worry about real-
time, in many cases, because our goals are so
easily satisfied!

