CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Using real-time

= Consider using a realtime operating system,
clock synchronization algorithm, and to
design protocols that exploit time

= Example: MARS system uses pairs of
redundant processors to perform actions
fault-tolerantly and meet deadlines. Has
been applied in process control systems.
(Another example: Delta-4)

Features of real-time

= The O/S itself tends to be rather simple
= Big black boxes behave unpredictably

= They are structured in terms of “tasks”
= A task is more or less a thread
= But typically come with expected runtime,

deadlines, priorities, “interruptability ", etc

= User decomposes application into task-like
component }garts and then expresses goals in
a form that RTOS can handle

= Widely used on things like medical devices

RTOS can be beneficial

= Lockheed Martin
ATL timed CORBA

method invocations

= Variation in
response time was
huge with a normal
Linux OS

= When using a
TimesysRTOS the
variability is
eliminated!

= Given some degree of real-time
behavior in the platform...

= ... goal is to offer distributed real-time
abstractions programmers can use

Real-time broadcast protocols

= Can also implement broadcast protocols that
make direct use of temporal information

= Examples:
= Broadcast that is delivered at same time by all
correct processes (plus or minus the clock skew)
= Distributed shared memory that is updated within
a known maximum delay

= Group of processes that can perform periodic
actions

A real-time broadcast

N

¢ t+a t+b
Po - >
P, A .
s N S
P "?‘ / >
P X N = >
Ps, A >

Messageissent at timet by p,. Later both pyand p, fail. But
messageisstill delivered atomically, after abounded delay, and
within abounded interval of time (at non-faulty processes)

A real-time distributed shared
memory

¢ t+ta t+b
Po >
set x=3
P1 >
P2 =3 >
Ps3 >
Pa. >
Ps. >

At timet pyupdatesavariablein adistributed shared memory.
All correct processes obser ve the new value after a bounded
delay, and within abounded interval of time.

Periodic process group:

p —
P1. >
P2 5
P —
P >
p >

Periodically, all members of a group take some action.
| dea isto accomplish thiswith minimal communication

The CASD protocols

= Also known as the “D -T” protocols

= Developed by Cristian and others at IBM, was
intended for use in the (ultimately, failed)
FAA project

= Goal is to implement a timed atomic
broadcast tolerant of Byzantine failures

Basic idea of the CASD

! protocols

= Assumes use of clock synchronization

= Sender timestamps message

= Recipients forward the message using a
flooding technique (each echos the message
to others)

= Wait until all correct processors have a copy,
then deliver in unison (up to limits of the
clock skew)

CASD picture

tta t+b

be AV
o W
Ps '\ N

Ps A |

vYyYVyVYVYYY

Po P, fail. Messages are lost when echoed by p,, p;

_ Idea of CASD

= Assume known limits on number of processes that
fail during protocol, number of messages lost

= Using these and the temporal assumptions, deduce
worst-case scenario

= Now now that if we wait long enough, all (or no)
correct process will have the message

= Then schedule delivery using original time plus a
delay computed from the worst-case assumptions

= In the usual case, nothing goes wrong, hence
the delay can be very conservative

= Even if things do go wrong, is it right to
assume that if a message needs between 0
and dms to make one hope, it needs [0,n* d]
to make n hops?

= How realistic is it to bound the number of
failures expected during a run?

CASD in a more typical run

vVvYyVvYyYyvYyy

... leading developers to employ more
aggressive parameter settings

Po

P \

P3
Pa.
Ps

vV Yy vy VY VY Y

CASD with over-aggressive paramter settings

‘_ starts to “malfunction”

¢ t+a| |t+b
S . >
.. \x f .
P i "k‘ /[>
Pa R >
Ps A | . >

all processeslook “incorrect” (red) fromtimetotime

= When run “slowly” protocol is like a real-time
version of abcast

= When run “quickly” protocol starts to give
probabilistic behavior:
= If I am correct (and there is no way to know!)
then | am guaranteed the properties of the
protocol, but if not, I may deliver the wrong
messages

How to repair CASD in this

_ case?

= Gopal and Toueg developed an extension, but
it slows the basic CASD protocol down, so it
wouldn’t be useful in the case where we want
speed and also reaktime guarantees

= Can argue that the best we can hope to do is
to superimpose a process group mechanism
over CASD (Verissimo and Almeida are
looking at this).

m CASD can be used to implement a distributed
shared memory (“delta-common storage™)

= But when this is done, the memory
consistency properties will be those of the
CASD protocol itself

= If CASD protocol delivers different sets of
messages to different processes, memory will
become inconsistent

= In fact, we have seen that CASD can do just
this, if the parameters are set aggressively

= Moreover, the problem is not detectable
either by “technically faulty” processes or
“correct” ones

= Thus, DSM can become inconsistent and we

lack any obvious way to get it back into a
consistent state

Using CASD in real

= Would probably need to set the parameters
close to the range where CASD can
malfunction, but rarely

= Hence would need to add a self-stabilization
algorithm to restore consistent state of
memory after it becomes inconsistent

= Problem has not been treated in papers on
CASD

= pbcast protocol does this

Using CASD in real

! environments

= Once we build the CASD mechanism how
would we use it?
= Could implement a shared memory
= Or could use it to implement a real-time state
machine replication scheme for processes
= US air traffic project adopted latter approach
= But stumbled on many complexities...

Using CASD in real

= Pipelined computation

O > @

= Transformed computation

= Could be quite slow if we use conservative
parameter settings

= But with aggressive settings, either process
could be deemed “faulty” by the protocol
= If so, it might become inconsistent
= Protocol guarantees don't apply
= No obvious mechanism to reconcile states within
the pair
= Method was used by IBM in a failed effort to
build a new US Air Traffic Control system

= Research system done in Austria by Hermann
Kopetz
= Basic idea is that everything happens twice

= Receiver can suppress duplicates but is
guaranteed of at least one copy of each message

= Used to overcome faults without loss of real-time
guarantees
= MARS is used in the BMW but gets close to a
hardware f.tol. scheme

= What if a process starts to lag?
= What if applications aren’t strictly deterministic?
= How should such a system be managed?
= How can a process be restarted?
= If not, the system eventually shuts down!

= How to measure the timing behavior of
components, including the network

= It became too hard to work all of this
out

= Then they tried a transactional
approach, also had limited success

= Finally, they gave up!
= $6B was lost...
= A major fiasco, ATC is still a mess

! Totem approach

= Start with extended virtual synchrony model

= Analysis used to prove real-time delivery
properties

= Enables them to guarantee delivery within
about 100-200ms on a standard broadcast
LAN

= Contrast with our 85us latency for Horus!

Tradeoffs between

= Notice that as we push CASD to run
faster we lose consistency

= Contrast with our virtual synchrony
protocols: they run as fast as they can
(often, much faster than CASD when it
is not malfunctioning) but don’t
guarantee real-time delivery

= Suppose that experiments show that 99.99%
of Horus or Ensemble messages are delivered
in 85us +/- 10us for some known maximum
load

= Also have a theory that shows that 100% of
Totem messages are delivered in about
150ms for reasonable assumptions

= And have the CASD protocols which work well
with D around 250ms for similar LAN’s

= Question: is there really a difference between
these forms of guarantees?

= We saw that CASD is ultimately probabilistic.
Since Totem makes assumptions, it is also,
ultimately, probabilistic

= But the experimentally observed behavior of
Horus is also probabilistic

= ... so why isn't Horus a “real-time” system?

= To the realtime community?

= A system that provably achieves its deadlines
under stated assumptions

= Often achieved using delays!
= To the pragmatic community?
= The system is fast enough to accomplish our goals

= Experimentally, it never seems to lag behind or
screw up

= Scheduling
= Given goals, how should tasks be scheduled?
= Periodic, a-periodic and completely ad-hoc tasks

= What should we do if a system misses its
goals?

= How can we make components highly
predictable in terms of their realtime
performance profile?

! Real-time today

= Slow transition

= Older, special purpose operating systems and
components, carefully hand-crafted for
predictability
Newer systems are simply so fast (and can be
dedicated to task) that what used to be hard is
now easy
In effect, we no longer need to worry about real-
time, in many cases, because our goals are so
easily satisfied!

