
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Recap

n We’ve started a process of isolating
questions that arise in big systems
n Tease out an abstract issue
n Treat it separate from the original messy

context
n Try and understand what can and cannot

be done, and how to solve when
something can be done

This week

n We’ll focus on real time
n Basic issue: How can time be be “used”

in systems
n How can we synchronize clocks?
n How can we use time in protocols?
n In these kinds of systems, time has many

kinds of limitations. What implications do
they have for real-world applications?

What time is it?

n In distributed system we need practical
ways to deal with time
n E.g. we may need to agree that update A

occurred before update B
n Or offer a “lease” on a resource that

expires at time 10:10.0150
n Or guarantee that a time critical event will

reach all interested parties within 100ms

But what does time “mean”?

n Time on a global clock?
n E.g. with GPS receiver

n … or on a machine’s local clock
n But was it set accurately?
n And could it drift, e.g. run fast or slow?
n What about faults, like stuck bits?

n … or could try to agree on time

Reminder: Lamport’s approach

n Leslie Lamport suggested that we
should reduce time to its basics

n He defined the happens before relation
and introduced a concept of logical
clocks:
n If a → b, then LT(a) < LT(b)

n Schmuck: Extended to vector clock:
n a → b if and only if VT(a) < VT(b)

2

Rules for comparison of VTs

n We’ll say that VTA = VTB if
n ∀I, V TA[i] = V TB[i]

n And we’ll say that VTA < VTB if
n VTA = VTB but VTA ? VT B

n That is, for some i, V TA[i] < VTB[i]

n Examples?
n [2,4] = [2,4]
n [1,3] < [7,3]
n [1,3] is “incomparable” to [3,1]

Introducing “wall clock time”

n There are several options
n “Extend” a logical clock or vector clock with

the clock time and use it to break ties
n Makes meaningful statements like “B and D

were concurrent, although B occurred first”
n But unless clocks are closely synchronized such

statements could be erroneous!

n We use a clock synchronization algorithm
to reconcile differences between clocks on
various computers in the network

Synchronizing clocks

n Without help, clocks will often differ by
many milliseconds
n Problem is that when a machine downloads

time from a network clock it can’t be sure
what the delay was

n This is because the “uplink” and “downlink”
delays are often very different in a network

n Outright failures of clocks are rare…

Synchronizing clocks

n Suppose p synchronizes with time.windows.com and notes that 123 ms
elapsed while the protocol was running… what time is it now?

p

time.windows.com

What time is it?

09:23.02921

Delay: 123ms

Synchronizing clocks

n Options?
n P could guess that the delay was evenly

split, but this is rarely the case in WAN
settings (downlink speeds are higher)

n P could ignore the delay
n P could factor in only “known” delay

n For example, suppose the link takes at least
25ms in each direction…

Synchronizing clocks

n Suppose p synchronizes with time.windows.com and notes that 123 ms
elapsed while the protocol was running… what time is it now?

p

time.windows.com

What time is it?

09:23.02921

Delay: 123ms

25ms 25ms

3

Synchronizing clocks

n In general can’t do better than
uncertainty in the link delay from the
time source down to p
n Take the measured delay
n Subtract the “certain” component
n We are left with the uncertainty

n Actual time can’t get more accurate
than this uncertainty!

What about GPS?

n GPS has a network of satellites that
send out the time, with microsecond
precision

n Each radio receiver captures several
signals and compares the time of arrival

n This allows them to triangulate to
determine position

GPS Triangulation Issues in GPS triangulation

n Depends on very accurate model of
satellite position
n In practice, variations in gravity cause

satellite to move while in orbit

n Assumes signal was received “directly”
n Urban “canyons” with reflection an issue

n DOD encrypts low-order bits

GPS as a time source

n Need to estimate time for signals to transit
through the atmosphere
n This isn’t hard because the orbit of the satellites is

well known
n Must correct for issues such as those just

mentioned

n Accurate to +/- 25ms without corrections
n Can achieve +/1 1us accuracy with correction

algorithm, if enough satellites are visible

Consequences?

n With a cheap GPS receiver, 25ms accuracy,
which is large compared to time for
exchanging messages
n 10,000 msgs/second on modern platforms

n … hence .1ms “data rates”
n Moreover, clocks on cheap machines have 10ms

accuracy

n But with expensive GPS, we could timestamp
as many as 100,000 msgs/second

4

Accuracy and Precision

n Accuracy is a measure of how close a
clock is to “true” time

n Precision is a measure of how close a
set of clocks are to one-another
n Both are often expressed in terms of a

window and a drift rate

Thought question

n We are building an anti-missile system
n Radar tells the interceptor where it should

be and what time to get there
n Do we want the radar and interceptor to

be as accurate as possible, or as precise as
possible?

Thought question

n We want them to agree on the time but
it isn’t important whether they are
accurate with respect to “true” time
n “Precision” matters more than “accuracy”
n Although for this, a GPS time source would

be the way to go
n Might achieve higher precision than we can

with an “internal” synchronization protocol!

Real systems?

n Typically, some “master clock” owner
periodically broadcasts the time

n Processes then update their clocks
n But they can drift between updates
n Hence we generally treat time as having

fairly low accuracy
n Often precision will be poor compared to

message round-trip times

Clock synchronization

n To optimize for precision we can
n Set all clocks from a GPS source or some other

time “broadcast” source
n Limited by uncertainty in downlink times

n Or run a protocol between the machines
n Many have been reported in the literature
n Precision limited by uncertainty in message delays
n Some can even overcome arbitrary failures in a subset of

the machines!

Adjusting clocks: Not easy!

n Suppose the current time is 10:00.00pm
n Now we discover we’re wrong

n It’s actually 9:59.57pm!

n Options:
n Set the clock back by 3 seconds…

n But what will this do to timers?
n Implies a need for a “global time warp”

n Introduce an artificial time drift
n E.g. make clock run slowly for a little while

5

Real systems

n Many adjust time “abruptly”
n Time could seem to freeze for a while, until

the clock is accurate (e.g. if it was fast)
n Or might jump backwards or forwards with

no warning to applications

n This causes many real systems to use
relative time: “now + XYZ”
n But measuring relative time is hard

Some advantages of real time

n Instant common knowledge
n “At noon, switch from warmup mode to

operational mode”
n No messages are needed
n Action can be more accurate that would be

possible (due to speed of light) with
message agreement protocols!

Some advantages of real time

n The outside world cares about time
n Aircraft attitude control is a “real time”

process
n People and cars and planes move at

speeds that are measured in time
n Physical processes often involve

coordinated actions in time

Disadvantages of real time

n Weeks ago, we saw that causal time is a
better way to understand event relationships
in actual systems
n Real time can be deceptive

n Causality can be tracked… and is closer to what
really mattered!

n For example, a causal snapshot is “safe” but
an instantaneous one might be confusing

Internal uses of time

n Most systems use time for expiration
n Security credentials are only valid for a

limited period, then keys are updated
n IP addresses are “leased” and must be

refreshed before they time out
n DNS entries have a TTL value
n Many file systems use time to figure out

whether one file is fresher than another

The “endless rebuild problem”

n Suppose you run Make on a system that
has a clock running slow
n File xyz is “older” than xyz.cs, so we

recompile xyz…
n … creating a new file, which we timestamp
n … and store

n The new one may STILL be “older” than
xyz.cs!

6

Implications?

n In a robust distributed system, we may
need trustworthy sources of time!
n Time services that can’t be corrupted and

won’t run slow or fast
n Synchronization that really works
n Algorithms that won’t malfunction if clocks

are off by some limited amount

Fault-tolerant clock sync

n Assume that we have 5 machines with
GPS units

n Each senses the time independently
n Challenge: how to achieve optimal

precision and accuracy?

Srikanth and Toueg

n You can’t achieve both at once
n To achieve the best precision you lose

some accuracy, and vice versa

n Problem is ultimately similar to
Byzantine Agreement
n We looked at this once, assuming

signatures
n Similar approach can be used for clocks

Combining “sensor” inputs

n “Shout at 10:00.00”

True time

**
*

*
*

Combining “sensor” inputs

n Basic approach
n Assume that no more than k out of n fail

n Depending on assumptions, k is usually
bounded to be less than n/3

n Discard outliers
n Take mean of resulting values

n Attacking such a clock?
n Try and be “as far away as possible”

without getting discarded

How do real clocks fail?

n Bits can stick
n This gives clocks that “jump around”

n The whole clock can get stuck, perhaps
erratically

n Clock can miscount and hence drift
(backwards) rapidly

7

Summary

n Very appealing to use time in distributed
systems

n But doing so isn’t trivial
n We need clock synchronization software or GPS…

and even GPS can fail (it can break, or can have
problems due to environment)

n Fault-tolerant clock synchronization is hard

n Clocks in real systems can jump around…
even on “correct” machines!

For next time

n Read the introduction to Chapter 14 to
be sure you are comfortable with
notions of time and with notation

n Chapter 22 looks at clock
synchronization

