
CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Today

n Transactions in large, complex settings:
n Nested Transactions
n “Transactions” in WebServices.

n Then touch on some related issues
n Need for 2-phase commit
n Availability limitations of the transactional

model.

Large complex systems

n They will often have many components
n Operations may occur over long periods

of time
n We’ll need to ensure all-or-nothing

outcomes but also need to allow high
levels of concurrency

Concerns about transactions

n While running a transaction acquires locks
n Other transactions will block on these locks hence

the longer a transaction runs the more it cuts
system-wide concurrency

n Some subsystems may not employ
transactional interfaces

n Application may be a “script”, not a single
program

Transactions on distributed
objects

n Idea was proposed by Liskov’s Argus group
n Each object translates an abstract set of

operations into the concrete operations that
implement it

n Result is that object invocations may “nest”:
n Library “update” operations, do

n A series of file read and write operations that do
n A series of accesses to the disk device

Nested transactions

n Call the traditional style of flat
transaction a “top level” transaction
n Argus short hand: “actions”

n The main program becomes the top
level action

n Within it objects run as nested actions

Arguments for nested
transactions
n It makes sense to treat each object invocation as a

small transaction: begin when the invocation is done,
and commit or abort when result is returned
n Can use abort as a “tool”: try something; if it doesn’t work

just do an abort to back out of it.
n Turns out we can easily extend transactional model to

accommodate nested transactions

n Liskov argues that in this approach we have a simple
conceptual framework for distributed computing

Nested transactions: picture

T1: fetch(“ken”) set_salary(“ken”, 100000) ... commit

open_file ... seek... read seek... write...

... lower level operations...

Observations
n Can number operations using the obvious notation

n T1, T1.2.1.....

n Subtransaction commit should make results visible to
the parent transaction

n Subtransaction abort should return to state when
subtransaction (not parent) was initiated

n Data managers maintain a stack of data versions

Stacking rule

n Abstractly, when subtransaction starts, we
push a new copy of each data item on top of
the stack for that item

n When subtransaction aborts we pop the stack
n When subtransaction commits we pop two

items and push top one back on again
n In practice, can implement this much more

efficiently!!!

Data objects viewed as
“stacks”

x y z

17

6

1

13

-2

18

30

15

T0

T1.1.1

T1.1T1.1

T1.1.1

• Transaction T0 wrote 6 into x

• Transaction T1 spawned subtransactions that wrote
new values for y and z

Locking rules?
n When subtransaction requests lock, it should

be able to obtain locks held by its parent
n Subtransaction aborts, locks return to

“prior state”
n Subtransaction commits, locks retained

by parent
n ... Moss has shown that this extended version

of 2-phase locking guarantees serializability
of nested transactions

Commit issue?

n Each transaction will have touched some set
of data managers
n Includes those touched by nested sub-actions

n But not things done by sub-actions that aborted

n Commit transaction by running 2PC against
this set

n We’ll discuss this in upcoming lectures but

2-Phase commit: Reminder

n Goal is simply to ensure that either
n All processes do an update, or

n No process does the update

n For example, at the end of a transaction we
want all processes to commit or all to abort

n The “two phase” aspect involves
1. Asking: “Can you commit transaction tx?”
2. Then doing “Commit” or “Abort”

Experience with model?

n Some major object oriented distributed
projects have successfully used transactions

n Seems to work only for database style
applications (e.g. the separation of data from
computation is natural and arises directly in
the application)

n Seems to work only for short-running
applications (Will revisit this issue shortly!)

Web Services

n Supports nested transaction model but many
vendors might opt for only flat transactions

n Also provides a related model called business
transactions
n Again, application accesses multiple objects

n Again, each access is a transaction
n But instead of a parent transaction, we use some

form of script of actions and compensating actions
to take if an action fails

Transactions in Web Services
n Imagine a travel agency that procures air tickets,

hotel stays, and rental cars for traveling customers.

n And imagine that the agency wants to automate the
whole process.
n Where all partners expose WS interfaces

n This process can be very lengthy.

n And typically spans multiple “sub-processes”, each in
a different administrative domain.

n What to do when say the agency could find air-
tickets and hotel accommodation,but no rental car?

3-Tier Model (reminder)

Web
Services

Dispatcher

Transactional
Storage

Business LogicEnd User Back-end Server

Transaction Hierarchy in WS

n Basic unit is the activity : a computation
executed as a set of scoped operations.

n Top-level process is "Business Activity"
n May run for a long time, so holding locks

on resources until commit is not viable.
Ø Have to expose results of uncommitted

business activities to concurrently
executing activities.

Transaction Hierarchy in WS

n Small lower-level interactions are called
Atomic Transactions
n Short; executed within limited trust

domains.
n Satisfy ACID properties.

n Imagine a tree structure here (similar to
nested txs)

Fault-tolerance
n We know how faults are handled in atomic

transactions.
n What about faults in Business Activities?

n Say Business Transaction B contains atomic
transactions A1 and A2, and A1 fails and A2
succeeds – need to “undo” A2 after it had
committed

n Issue: since we aren’t using nested
transactions, how can we obtain desired all-
or-nothing outcome?

Compensating actions

n Idea is to write a form of script
n If <action succeeds> then <next step>
n Else <compensate>

n The compensation might undo some
actions much as an abort would, but
without the overheads of a full nested
transaction model

n (Model has also been called “sagas”)

The WS-Coordination Spec.

n A standard that describes how different
Web Services work together reliably.

n The coordination framework contains
the Activation, Registration and
Coordination Services…

Some Terminology
n The Coordination type identifies what kind the

activity is (Atomic Transaction/ Business Activity)

n Each message sent by a participant contains a
CoordinationContext for message to be understood:
n Has an activity identifier (unique for each activity)
n A pointer to the registration service used by the participant.
n The coordination type.

The Coordinator

n Activation Service: used to create activities
n Participants specify the coordination type

n Activation Service returns the CoordinationContext
that’s used in later stages.

n Registration Service: used by participants to
register with (respective) coordinator for a
given coordination protocol.

n Coordination Protocol Services: A set of these
for each supported coordination type.

WS-Transaction

n Specifies protocols for each
coordination type.

n Atomic Transactions
n Completion, PhaseZero, 2PC, etc.

n Business Transactions
n BusinessAgreement,

BusinessAgreementWithComplete

Example WS-Coord Message Flow

Protocol Message Flow Handling a Business Activity

Transactions in WS – Resources
n http://msdn.microsoft.com/library/default.asp?url=/li

brary/en-us/dnglobspec/html/ws-coordination.asp

n http://msdn.microsoft.com/library/default.asp?url=/li
brary/en-us/dnglobspec/html/ws-transaction.asp

n http://www-128.ibm.com/developerworks/library/ws-
wstx1/

n http://www-128.ibm.com/developerworks/library/ws-
wstx2/

Recap

n We’ve considered two mechanisms for
applying transactions in complex
systems with many objects
n Nested transactions, but these can hold

locks for a long time
n Business transactions, which are a bit more

like a command script
n In remainder of today’s talk look at

transactions on replicated data

Reliability and transactions

n Transactions are well matched to database
model and recoverability goals

n Transactions don’t work well for non-
database applications (general purpose O/S
applications) or availability goals (systems
that must keep running if applications fail)

n When building high availability systems,
encounter replication issue

Types of reliability

n Recoverability
n Server can restart without intervention in a

sensible state
n Transactions do give us this

n High availability
n System remains operational during failure
n Challenge is to replicate critical data

needed for continued operation

Replicating a transactional
server

n Two broad approaches
n Treat replication as a special situation

n Leads to a primary server approach with a “warm
standby”

n Most common in commercial products

n Just use distributed transactions to update
multiple copies of each replicated data item
n Very much like doing a nested transaction but now the

components are the replicas
n We’ll discuss this kind of replication in upcoming lectures

Server replication

n Suppose the primary sends the log to
the backup server

n It replays the log and applies
committed transactions to its
replicated state

n If primary crashes, the backup soon
catches up and can take over

Primary/backup

primary

backup

Clients initially connected to primary, which keeps
backup up to date. Backup tracks log

log

Primary/backup

primary

backup

Primary crashes. Backup sees the channel break,
applies committed updates. But it may have missed
the last few updates!

Primary/backup

primary

backup

Clients detect the failure and reconnect to backup. But
some clients may have “gone away”. Backup state could
be slightly stale. New transactions might suffer from this

Issues?

n Under what conditions should backup take over
n Revisits the consistency problem seen earlier with

clients and servers

n Could end up with a “split brain”

n Also notice that still needs 2PC to ensure that
primary and backup stay in same states!
n Either want both to reflect a committed transaction,

or (if the transaction aborted), neither to reflect it

Split brain: reminder

primary

backup

Clients initially connected to primary, which keeps
backup up to date. Backup follows log

log

Split brain: reminder

Transient problem causes some links to break but not all.
Backup thinks it is now primary, primary thinks backup is down

primary

backup

Split brain: reminder

Some clients still connected to primary, but one has switched
to backup and one is completely disconnected from both

primary

backup

Implication?

n A strict interpretation of ACID leads to
conclusions that
n There are no ACID replication schemes

that provide high availability
n We’ll see more on this issue soon…

n Most real systems evade the limitation
by weakening ACID

Real systems

n They use primary-backup with logging
n But they simply omit the 2PC

n Server might take over in the wrong state
(may lag state of primary)

n Can use hardware to reduce or eliminate
split brain problem

How does hardware help?

n Idea is that primary and backup share
a disk

n Hardware is configured so only one can
write the disk

n If server takes over it grabs the “token”
n Token loss causes primary to shut down

(if it hasn’t actually crashed)

Reconciliation
n This is the problem of fixing the transactions

impacted by loss of tail of log in a failure
n Usually just a handful of transactions

n They committed but backup doesn’t know because
it never saw a commit record

n Someday, primary recovers and discovers the
problem
n Need to apply the missing ones
n Also causes cascaded rollback
n Worst case may require human intervention

n Similar to compensation in Web Services

Summary?

n We looked at a variety of situations in which
transactions touch multiple objects
n …because of nesting

n … because of complex business applications
n … because of primary/backup replication

n We left one major stone unturned:
n Replicated data in the sense of process groups,

often with goal of higher availability
n We’ll explore this in the next few lectures

