CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

= Transactions in large, complex settings:
= Nested Transactions
= “Transactions” in WebServices.

= Then touch on some related issues
= Need for 2-phase commit

= Availability limitations of the transactional
model.

= They will often have many components

= Operations may occur over long periods
of time

= We'll need to ensure all-or-nothing

outcomes but also need to allow high
levels of concurrency

= While running a transaction acquires locks
= Other transactions will block on these locks hence
the longer a transaction runs the more it cuts
system-wide concurrency
= Some subsystems may not employ
transactional interfaces
= Application may be a “script”, not a single
program

Transactions on distributed
$ objects

= ldea was proposed by Liskov's Argus group

= Each object translates an abstract set of
operations into the concrete operations that
implement it

= Result is that object invocations may “nest”:
= Library “update” operations, do
= A series of file read and write operations that do
= A series of accesses to the disk device

= Call the traditional style of flat
transaction a “top level” transaction
= Argus short hand: “actions”

= The main program becomes the top
level action

= Within it objects run as nested actions

Arguments for nested

= It makes sense to treat each object invocation as a
small transaction: begin when the invocation is done,
and commit or abort when result is returned

« Can use abort as a ‘tool”: try something; if it doesn't work
just do an abort to back out of it.

= Turns out we can easily extend transactional model to
accommodate nested transactions

= Liskov argues that in this approach we have a simple
conceptual framework for distributed computing

Nested transactions: picture

ych(“ I«en’&;set_salary(N kenKJ;OOOOO) ... commit
y_file...seek...read seek... write...

K
... lower level operations...

= Can number operations using the obvious notation
o Ty Topgee

= Subtransaction commit should make results visible to
the parent transaction

= Subtransaction abort should return to state when
subtransaction (not parent) was initiated

= Data managers maintain a stack of data versions

Abstractly, when subtransaction starts, we

push a new copy of each data item on top of

the stack for that item

When subtransaction aborts we pop the stack

= When subtransaction commits we pop two
items and push top one back on again

= In practice, can implement this much more

efficiently!!!

Data objects viewed as

* Transaction T , wrote 6 into X

* Transaction T, spawned subtransactions that wrote
new valuesfory and z

2 Tia1a 15 Tiia

T 13 Tia 30 Tia
1 18
X y z

When subtransaction requests lock, it should
be able to obtain locks held by its parent
Subtransaction aborts, locks return to
“prior state”
= Subtransaction commits, locks retained

by parent
= ... Moss has shown that this extended version
of 2-phase locking guarantees serializability
of nested transactions

$ h Commit issue?

= Each transaction will have touched some set
of data managers
= Includes those touched by nested sub-actions
= But not things done by sub-actions that aborted
= Commit transaction by running 2PC against
this set

= We'll discuss this in upcoming lectures but

2-Phase commit: Reminder

= Goal is simply to ensure that either

= All processes do an update, or

= No process does the update
= For example, at the end of a transaction we

want all processes to commit or all to abort

= The “two phase” aspect involves

1. Asking: “Can you commit transaction t,?”

2. Then doing “Commit” or “Abort”

= Some major object oriented distributed
projects have successfully used transactions

= Seems to work only for database style
applications (e.g. the separation of data from
computation is natural and arises directly in
the application)

= Seems to work only for short-running
applications (Will revisit this issue shortly!)

Web Services
= Supports nested transaction model but many
vendors might opt for only flat transactions

= Also provides a related model called business
transactions
= Again, application accesses multiple objects
= Again, each access is a transaction
= But instead of a parent transaction, we use some
form of script of actions and compensating actions
to take if an action fails

= Imagine a travel agency that procures air tickets,
hotel stays, and rental cars for traveling customers.

= And imagine that the agency wants to automate the
whole process.
= Where all partners expose WS interfaces

= This process can be very lengthy.

= And typically spans multiple “sub-processes”, each in
a different administrative domain.

= What to do when say the agency could find air-
tickets and hotel accommodation,but no rental car?

3-Tier Model (reminder)

m

1= Carviass Transactional

s
r\a Dispatcher Storage

End User Business Logic Back-end Server

$ Transaction Hierarchy in WS

= Basic unit is the activity : a computation
executed as a set of scoped operations.
= Top-level process is "Business Activity"
= May run for a long time, so holding locks
on resources until commit is not viable.
» Have to expose results of uncommitted
business activities to concurrently
executing activities.

= Small lower-level interactions are called
Atomic Transactions
= Short; executed within limited trust
domains.
= Satisfy ACID properties.
= Imagine a tree structure here (similar to
nested txs)

= We know how faults are handled in atomic
transactions.
= What about faults in Business Activities?
= Say Business Transaction B contains atomic
transactions Al and A2, and A1l fails and A2
succeeds — need to “undo” A2 after it had
committed
= Issue: since we aren't using nested
transactions, how can we obtain desired all
or-nothing outcome?

= |dea is to write a form of script
= If <action succeeds> then <next step>
= Else <compensate>

= The compensation might undo some
actions much as an abort would, but
without the overheads of a full nested
transaction model

= (Model has also been called “sagas™)

Figure BAL: Handling Business Faults
exception handling
categories example faults techniques

order cancellation; business-logic

loosely-coupled
X ach fault handiers

business acBVity | raservation update

service temporaril
tightly-coupled Unavalzoie; "
business task

atomic transaction
abort and retry

food chain

system crash

= A standard that describes how different
Web Services work together reliably.

= The coordination framework contains
the Activation, Registration and
Coordination Services...

Some Terminology

= The Coordination type identifies what kind the
activity is (Atomic Transaction/ Business Activity)

= Each message sent by a participant contains a
CoordinationContext for message to be understood:
= Has an activity identifier (unique for each activity)
= A pointer to the registration service used by the participant.
= The coordination type.

= Activation Service: used to create activities
= Participants specify the coordination type
= Activation Service returns the CoordinationContext

that's used in later stages.

= Registration Service: used by participants to
register with (respective) coordinator for a
given coordination protocol.

= Coordination Protocol Services: A set of these
for each supported coordination type.

WS-Transaction

= Specifies protocols for each
coordination type.
= Atomic Transactions
= Completion, PhaseZero, 2PC, etc.
= Business Transactions

= BusinessAgreement,
BusinessAgreementWithComplete

Example WS-Coord Message Flow

Figure AT1: Atomic Transaction WS-Coordination Flow

web server middleware server database
5) 12)
<Clomessagey o <C2>méssage o8
) JRes '1)RegResp 4
% *)HegResp
1 3)Hegibter for 6
2 C éeg letion Catkec) 2 Eaesztilgm Create
9)Register
) | Jfor PhaseZero | (TAsh
Coorda [RSa CoordB |RSD
17) Register 16) Register
a o cue lor e
— | T9RereD
@ web service

Protocol Message Flow

Figure AT2: Atomic Transaction Coordination Protocol Hows
web server middleware server database
oo 4)<C2>write | oD
Pacp [Peanc
PhaseZer, Prepare| Gomind
5
Phasezerdcr] Prebbred commbil)
2)Phasezero
P g
- vz [Co-pz Cc-zpc
7)Prepare || Coords 8)Prepare CoordC
M 11)Prepared
Pb-2pc [Cb-2pc Pe-2pc
13) Commit 14)Commit
18) Committed 17) Committed
_ =)] |)
a web service

ER

e

$ Transactions in WS — Resources

= http://msdn.microsoft.com/library/default.asp?url=/li
brary/en-us/dnalobspec/html/ws-coordination.asp

= http://msdn.microsoft.com/library/default.asp?url=/li
brary/en-us/dnalobspec/html/ws-transaction.asp

= http://www-128.ibm.com/developerworks/library/ws-
wstx1/

= http://www-128.ibm.com/developerworks/library/ws-
wstx2/

= We've considered two mechanisms for
applying transactions in complex
systems with many objects

= Nested transactions, but these can hold
locks for a long time

= Business transactions, which are a bit more
like a command script
= In remainder of today's talk look at
transactions on replicated data

= Transactions are well matched to database
model and recoverability goals

= Transactions don’t work well for non-
database applications (general purpose O/S
applications) or availability goals (systems
that must keep running if applications fail)

= When building high availability systems,
encounter replication issue

Types of reliability

= Recoverability

= Server can restart without intervention in a
sensible state

= Transactions do give us this
= High availability
= System remains operational during failure

= Challenge is to replicate critical data
needed for continued operation

Replicating a transactional
server

= Two broad approaches
= Treat replication as a special situation
= Leads to a primary server approach with a “warm
standby”
= Most common in commercial products
= Just use distributed transactions to update
multiple copies of each replicated data item

= Very much like doing a nested transaction but now the
components are the replicas

= We'll discuss this kind of replication in upcoming lectures

Server replication

= Suppose the primary sends the log to
the backup server

= It replays the log and applies
committed transactions to its
replicated state

= If primary crashes, the backup soon
catches up and can take over

Primary/backup

‘ primary

log

. backup

Clientsinitially connected to primary, which keeps
backup up to date. Backup trackslog

. primary
. backup

Primary crashes. Backup seesthe channel break,

applies committed updates. But it may have missed
thelast few updates!

Primary/backup

imary

- backup

Clients detect the failure and reconnect to backup. But
some clients may have “ gone away” . Backup state could
beslightly stale. New transactions might suffer from this

Issues?

= Under what conditions should backup take over

= Revisits the consistency problem seen earlier with
clients and servers

= Could end up with a “split brain”
= Also notice that still needs 2PC to ensure that
primary and backup stay in same states!

= Either want both to reflect a committed transaction,
or (if the transaction aborted), neither to reflect it

Split brain: reminder

. primary

log

. backup

Clientsinitially connected to primary, which keeps
backup up to date. Backup followslog

Split brain: reminder

primary

Transient problem causes some linksto break but not all.
Backup thinksitisnow primary, primary thinks backup is down

& Split brain: reminder

primary

‘ backup

Some clients still connected to primary, but one has switched
to backup and one is completely disconnected from both

= A strict interpretation of ACID leads to
conclusions that

= There are no ACID replication schemes
that provide high availability

= We'll see more on this issue soon...

= Most real systems evade the limitation
by weakening ACID

= They use primary-backup with logging
= But they simply omit the 2PC

= Server might take over in the wrong state
(may lag state of primary)

= Can use hardware to reduce or eliminate
split brain problem

= Idea is that primary and backup share
a disk

= Hardware is configured so only one can
write the disk

= If server takes over it grabs the “token”

= Token loss causes primary to shut down
(if it hasn’t actually crashed)

= This is the problem of fixing the transactions
impacted by loss of tail of log in a failure
= Usually just a handful of transactions
= They committed but backup doesn’t know because
it never saw a commit record
= Someday, primary recovers and discovers the
problem
= Need to apply the missing ones
= Also causes cascaded rollback
= Worst case may require human intervention

= Similar to compensation in Web Services

= We looked at a variety of situations in which
transactions touch multiple objects
= ..because of nesting
= ... because of complex business applications
= ... because of primary/backup replication
= We left one major stone unturned:

= Replicated data in the sense of process groups,
often with goal of higher availability

= We'll explore this in the next few lectures

