
4/2/2007

1

CS514: Intermediate Course 
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Transactions
The most important reliability technology for 
client-server systems
Now start an in-depth examination of the 
topictopic

How transactional systems really work
Implementation considerations
Limitations and performance challenges
Scalability of transactional systems

This will span several lectures

Transactions

There are several perspectives on how to 
achieve reliability

One approach focuses on reliability of 
communication channels and leaves application-
oriented issues to the client or server – “stateless”
Major alternative is to focus on the data managed 
by a system.  Stateful version yields transactional 
system
A third option exploits non-transactional 
replication.  We’ll look at it later

Transactions on a single 
database:

In a client/server architecture,
A transaction is an execution of a single 
program of the application(client) at the g
server.

Seen at the server as a series of reads and writes.

We want this setup to work when
There are multiple simultaneous client 
transactions running at the server.
Client/Server could fail at any time.

Transactions –
The ACID Properties

Are the four desirable properties for reliable handling of 
concurrent transactions.
Atomicity

The “All or Nothing” behavior.
Consistency

Each transaction must preserve consistency.
Isolation (Serializability)

Concurrent transaction execution should be equivalent 
(in effect) to a serialized execution.

Durability
Once a transaction is done, it stays done.

Transactions in the real world

In cs514 lectures, transactions are treated at 
the same level as other techniques
But in the real world, transactions represent a 
huge chunk (in $ value) of the existing 
market for distributed systems!

The web is gradually starting to shift the balance (not by 
reducing the size of the transaction market but by growing 
so fast that it is catching up)
But even on the web, we use transactions when we buy 
products



4/2/2007

2

The transactional model
Applications are coded in a stylized way:

begin transaction
Perform a series of read, update operations
Terminate by commit or abort.  y

Terminology
The application is the transaction manager
The data manager is presented with operations 
from concurrently active transactions
It schedules them in an interleaved but serializable
order

A side remark
Each transaction is built up incrementally

Application runs
And as it runs, it issues operations
The data manager sees them one by one

But often we talk as if we knew the whole 
thing at one time

We’re careful to do this in ways that make sense
In any case, we usually don’t need to say anything 
until a “commit” is issued

Transaction and Data 
Managers

Transactions

read

Data (and Lock) Managers

update

read

update

transactions are stateful: transaction “knows” about 
database contents and updates

Typical transactional program
begin transaction;

x = read(“x-values”, ....);
y read(“y values” );y = read(“y-values”, ....);
z = x+y;
write(“z-values”, z, ....);

commit transaction;

What about the locks?
Unlike other kinds of distributed systems, 
transactional systems typically lock the data 
they access
They obtain these locks as they run:They obtain these locks as they run:

Before accessing “x” get a lock on “x”
Usually we assume that the application knows 
enough to get the right kind of lock.  It is not 
good to get a read lock if you’ll later need to 
update the object

In clever applications, one lock will often 
cover many objects

Locking rule
Suppose that transaction T will access 
object x.

We need to know that first, T gets a lockWe need to know that first, T gets a lock 
that “covers” x

What does coverage entail?
We need to know that if any other 
transaction T’ tries to access x it will 
attempt to get the same lock



4/2/2007

3

Examples of lock coverage
We could have one lock per object
… or one lock for the whole database
… or one lock for a category of objects 

ld h l k f h h lIn a tree, we could have one lock for the whole tree 
associated with the root
In a table we could have one lock for row, or one for each 
column, or one for the whole table

All transactions must use the same rules!
And if you will update the object, the lock must be a 
“write” lock, not a “read” lock

Transactional Execution Log
As the transaction runs, it creates a history of 
its actions.  Suppose we were to write down 
the sequence of operations it performs.
Data manager does this, one by one
This yields a “schedule” 

Operations and order they executed
Can infer order in which transactions ran

Scheduling is called “concurrency control”

Observations
Program runs “by itself”, doesn’t talk to 
others
All the work is done in one program, in g
straight-line fashion.  If an application 
requires running several programs, like a C 
compilation, it would run as several separate 
transactions!
The persistent data is maintained in files or 
database relations external to the application

Serializability
Means that effect of the interleaved execution 
is indistinguishable from some possible serial 
execution of the committed transactions
For example: T1 and T2 are interleaved but it 
“looks like” T2  ran before T1
Idea is that transactions can be coded to be 
correct if run in isolation, and yet will run 
correctly when executed concurrently (and 
hence gain a speedup)

Need for serializable execution

T1: R1(X)  R1(Y)  W1(X) commit1

T2: R2(X) W2(X) W2(Y)  commit2

Data manager interleaves operations to improve concurrency

DB:     R1(X) R2(X) W2(X) R1(Y) W1(X) W2(Y) commit1 commit2

Non serializable execution

T1:     R1(X)  R1(Y)  W1(X) commit1

T2: R2(X) W2(X) W2(Y)  commit2

Problem: transactions may “interfere”.  Here, T2 changes x, 
hence T1 should have either run first (read and write) or after 
(reading the changed value).  

Unsafe!  Not serializable

DB:     R1(X) R2(X) W2(X) R1(Y) W1(X) W2(Y) commit2 commit1



4/2/2007

4

Serializable execution

T1:     R1(X)  R1(Y)  W1(X) commit1

T2: R2(X) W2(X) W2(Y)  commit2

Data manager interleaves operations to improve concurrency but 
schedules them so that it looks as if one transaction ran at a time.  
This schedule “looks” like T2 ran first.

DB:     R2(X) W2(X) R1(X) W1(X) W2(Y) R1(Y) commit2 commit1

Atomicity considerations
If application (“transaction manager”) 
crashes, treat as an abort
If data manager crashes, abort any non-g
committed transactions, but committed state 
is persistent 

Aborted transactions leave no effect, either in 
database itself or in terms of indirect side-effects
Only need to consider committed operations in 
determining serializability

How can data manager sort 
out the operations?

We need a way to distinguish different 
transactions

In example, T1 and T2

S l thi b i i d RPCSolve this by requiring an agreed upon RPC 
argument list (“interface”)

Each operation is an RPC from the transaction mgr 
to the data mgr
Arguments include the transaction “id”

Major products like NT 6.0 standardize these 
interfaces

Components of transactional 
system

Runtime environment: responsible for 
assigning transaction id’s and labeling each 
operation with the correct id.
Concurrency control subsystem: responsible 
for scheduling operations so that outcome will 
be serializable
Data manager: responsible for implementing 
the database storage and retrieval functions

Transactions at a “single” 
database

Normally use 2-phase locking or 
timestamps for concurrency control
Intentions list tracks “intended updates” p
for each active transaction
Write-ahead log used to ensure all-or-
nothing aspect of commit operations
Can achieve thousands of transactions 
per second

Strict Two-phase locking: 
how it works

Transaction must have a lock on each data 
item it will access.  

Gets a “write lock” if it will (ever) update the item
Use “read lock” if it will (only) read the itemUse read lock  if it will (only) read the item.  
Can’t change its mind!

Obtains all the locks it needs while it runs and 
hold onto them even if no longer needed
Releases locks only after making 
commit/abort decision and only after updates 
are persistent



4/2/2007

5

Why do we call it 
“Strict” “two phase”?

2-phase locking: Locks only acquired during 
the ‘growing’ phase, only released during the 
‘shrinking’ phase.
Strict: Locks are only released after the 
commit decision

Read locks don’t conflict with each other (hence T’ 
can read x even if T holds a read lock on x)
Update locks conflict with everything (are 
“exclusive”)

Strict Two-phase Locking

T1:     begin    read(x)    read(y)      write(x)    commit

T2:     begin    read(x)    write(x)     write(y)    commit

Acquires locks
Releases locks

Notes
Notice that locks must be kept even if 
the same objects won’t be revisited 

This can be a problem in long-running 
applications!
Also becomes an issue in systems that 
crash and then recover

Often, they “forget” locks when this happens
Called “broken locks”.  We say that a crash 
may “break” current locks…

Why does strict 2PL imply 
serializability?

Suppose that T’ will perform an operation 
that conflicts with an operation that T has 
done:

T’ will update data item X that T read or updatedT  will update data item X that T read or updated
T updated item Y and T’ will read or update it

T must have had a lock on X/Y that conflicts 
with the lock that T’ wants
T won’t release it until it commits or aborts
So T’ will wait until T commits or aborts

Acyclic conflict graph implies 
serializability

Can represent conflicts between 
operations and between locks by a 
graph (e.g. first T1 reads x and then T2 
writes x)
If this graph is acyclic, can easily show 
that transactions are serializable
Two-phase locking produces acyclic 
conflict graphs

Two-phase locking is 
“pessimistic”

Acts to prevent non-serializable schedules 
from arising: pessimistically assumes conflicts 
are fairly likely
Can deadlock, e.g. T1 reads x then writes y; 
T2 reads y then writes x.  This doesn’t always 
deadlock but it is capable of deadlocking

Overcome by aborting if we wait for too long, 
Or by designing transactions to obtain locks in a 
known and agreed upon ordering



4/2/2007

6

Contrast: Timestamped 
approach

Using a fine-grained clock, assign a “time” to 
each transaction, uniquely.  E.g. T1 is at time 
1, T2 is at time 2
Now data manager tracks temporal history of 
each data item, responds to requests as if 
they had occured at time given by timestamp
At commit stage, make sure that commit is 
consistent with serializability and, if not, abort

Example of when we abort
T1 runs, updates x, setting to 3
T2 runs concurrently but has a larger 
timestamp.  It reads x=3 
T1 eventually aborts
... T2 must abort too, since it read a value of 
x that is no longer a committed value

Called a cascaded abort since abort of T1 triggers 
abort of T2

Pros and cons of approaches
Locking scheme works best when conflicts 
between transactions are common and 
transactions are short-running
Timestamped scheme works best when 
conflicts are rare and transactions are 
relatively long-running
Weihl has suggested hybrid approaches but 
these are not common in real systems

Intentions list concept
Idea is to separate persistent state of 
database from the updates that have 
been done but have yet to commitbeen done but have yet to commit
Intensions list may simply be the in-
memory cached database state
Say that transactions intends to commit 
these updates, if indeed it commits

Role of write-ahead log
Used to save either old or new state of 
database to either permit abort by rollback 
(need old state) or to ensure that commit is 
ll h (b b blall-or-nothing (by being able to repeat 

updates until all are completed)
Rule is that log must be written before 
database is modified
After commit record is persistently stored and 
all updates are done, can erase log contents

Structure of a transactional 
system

application

cache (volatile)          lock records

updates (persistent)

database
log



4/2/2007

7

Recovery?
Transactional data manager reboots
It rescans the log

Ignores non-committed transactions
Reapplies any updates
These must be “idempotent”

Can be repeated many times with exactly the same 
effect as a single time
E.g. x := 3, but not x := x.prev+1

Then clears log records 
(In normal use, log records are deleted once 
transaction commits) 

Transactions in distributed 
systems

Notice that client and data manager might not 
run on same computer

Both may not fail at same time
Also either could timeout waiting for the other inAlso, either could timeout waiting for the other in 
normal situations

When this happens, we normally abort the 
transaction

Exception is a timeout that occurs while commit is 
being processed 
If server fails, one effect of crash is to break locks 
even for read-only access

Transactions in distributed 
systems

What if data is on multiple servers?
In a non-distributed system, transactions 
run against a single database systemg g y

Indeed, many systems structured to use just a 
single operation – a “one shot” transaction!

In distributed systems may want one 
application to talk to multiple databases

Transactions in distributed 
systems

Main issue that arises is that now we can have 
multiple database servers that are touched by 
one transaction
Reasons?Reasons?

Data spread around: each owns subset
Could have replicated some data object on multiple 
servers, e.g. to load-balance read access for large 
client set
Might do this for high availability

Solve using 2-phase commit protocol!

Two-phase commit in 
transactions

Phase 1: transaction wishes to commit.  Data 
managers force updates and lock records to 
the disk (e.g. to the log) and then say 
prepared to commitprepared to commit
Transaction manager makes sure all are 
prepared, then says commit (or abort, if 
some are not)
Data managers then make updates 
permanent or rollback to old values, and 
release locks

Commit protocol illustrated

ok to commit?



4/2/2007

8

Commit protocol illustrated

ok to commit?

ok with uscommitcommit

Note: garbage collection protocol not shown here

Unilateral abort
Any data manager can unilaterally abort a transaction 
until it has said “prepared”
Useful if transaction manager seems to have failed
Al i if d t h d t tAlso arises if data manager crashes and restarts 
(hence will have lost any non-persistent intended 
updates and locks)
Implication: even a data manager where only reads 
were done must participate in 2PC protocol!

Notes on 2PC
Although protocol looks trivial we’ll 
revisit it later and will find it more 
subtle than meets the eye!subtle than meets the eye!
Not a cheap protocol 

Considered costly because of latency: few 
systems can pay this price
Hence most “real” systems run 
transactions only against a single server

Coming next
More on transactions

Transactions in WebServices 
Issues of availability in transactional systemsIssues of availability in transactional systems
Using transactions in “real” network settings

Book: read chapter on transactions


