
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Quicksilver: Multicast for
modern settings

n Developed by Krzys Ostrowski
n Goal is to reinvent multicast with

modern datacenter and web systems in
mind

Talk outline

n Objective
n Two motivating examples
n Our idea and how it “looks” in Windows
n How Quicksilver works and why it scales
n What next? (perhaps, gossip solutions)
n Summary

Our Objective

n Make it easier for people to build
scalable distributed systems

n Do this by
n Building better technology
n Making it easier to use
n Matching solutions to problems people

really are facing

Motivating examples

n Before we continue, look at some
examples of challenging problems

n Today these are hard to solve
n Our work needs to make them easier
n Motivating examples:

(1) Web 3.0 – “active content”
(2) Data center with clustered services

Motivating example (1)

Web 1.0… 2.0… 3.0…

n Web 1.0: browsers and web sites
n Web 2.0: Google mashups and web

services that let programs interact with
services using Web 1.0 protocols.
Support for social networks.

n Web 3.0: A world of “live content”

Motivating example (1)

2

Motivating example (1)

“Publish-Subscribe” Services (I)

Motivating example (1)

Observations?

n Web 3.0 could be a world of highly
dynamic, high-data rate pub-sub

n But we would need a very different kind
of pub-sub infrastructure
n Existing solutions can’t scale this way…
n … and aren’t stable at high data rates
n … and can’t guarantee “consistency”

Motivating example (1)

Motivating example (2)

n Goal: Make it easy to build a datacenter
n For Google, Amazon, Fnac, eBay, etc

n Assume each center
n Has many computers (perhaps 10,000)
n Runs lots of “services” (hundreds or more)
n Replicates services & data to handle load

n Must also interconnect centers

Motivating example (2)

Today’s prevailing solution

Clients
Middle tier runs
business logic

Back-end shared
database system

Motivating example (2)

Concerns?

n Potentially slow (especially after crashes)
n Many applications find it hard to keep all

their data in databases
n Otherwise, we wouldn’t need general

purpose operating systems!

n Can we eliminate the database?
n We’ll need to replicate the “state” of the

service in order to scale up
Motivating example (2)

3

Response?

n Industry is exploring various kinds of in-
memory database solutions

n These eliminate the third tier

Motivating example (2)

A glimpse inside eStuff.com

Eventing middleware

LB

service

LB

service

LB

service

LB

service

LB

service

LB

service

“front-end applications”Web content generation Web services dispatchers

Motivating example (2)

Front end

Front end

x
y

z

Application structure…

Front end

Service -oriented client system
issues parallel requests…Data center dispatcher parallelizes

request among services within
center

Server partitions requests and
then uses clusters for

parallelization of query handling

Motivating example (2)

x
y

z
x

y
z

x
y

z
x

y
z

x
y

z
x

y
z

x y z

A RAPS of RACS (Jim Gray)

n RAPS: A reliable array of partitioned
subservices

n RACS: A reliable array of cloned server
processes

Ken searching for
“digital camera ”

Pmap “D-F”: {x, y, z} (equivalent replicas)

Here, y gets picked, perhaps based on load

A set of RACS

RAPS

Motivating example (2)

A-C D-F

“RAPS of RACS” in Data Centers

Query source Update source

Services are hosted at data centers but accessible system-wide

pmap

pmap

pmap

Server pool

l2P
map

Logical partitioning of services

Logical services map to a physical
resource pool, perhaps many to one

Data center A Data center B

Operators can control pmap , l2P map, other
parameters. Large- scale multicast used to

disseminate updates Motivating example (2)

Our examples have similarities

n Both replicate data in groups
n … that have a state (evolved over time)
n … and a name (or “topic”, like a file name)
n … updates are done by multicasts
n … queries can be handled by any member

n There will be a lot of groups
n Reliability need depends on application

4

Our examples have similarities

n A communication channel in Web 3.0 is
similar to a group of processes

n Other roles for groups
n Replication for scale in the services
n Disseminating updates (at high speed)
n Load balanced queries
n Fault-tolerance

Sounds easy?

n After 20 years of research, we still don’t
have group communication that
matches these kinds of uses!

n Our solutions
n Are mathematically elegant…
n But have NOT been easy to use
n Sometimes perform poorly
n And are NOT very scalable, either!

Integrating groups with
modern platforms

… and make it easy to use!

n It isn’t enough to create a technology
n We also need to have it work in the

same settings that current developers
are expecting
n For Windows, this would be the .net

framework
n Visual studio needs to “understand” our

tools!

New Style of Programming

Topics = Objects

Topic x = Internet.Enter(“Game X”);
Topic y = x.Enter(“Room X”);
y.OnShoot +=

new EventHandler(this.TurnAround);
while (true)

y.Shoot(new Vector(1,0,0));

Or go further…

n Can we add new kinds of live objects to the
operating system itself?

n Think of a file in Windows
n It has a “type” (the filename extension)

n Using the type Windows can decide which
applications can access it

n Why not add communications channels to
Windows with live content & “state”
n Events change the state over time

5

Exploiting the Type System

Typed Publish-Subscribe Vision: A new style of computing

n With groups that could represent…
n A distributed service replicated for fault-

tolerance or availability or performance
n An abstract data type or shared object
n A sharable mapped file
n A “place” where things happen

The “Type” of a Group means
“The properties it supports”

Examples of properties

n Best effort
n Virtual synchrony
n State machine replication (consensus)
n Byzantine replication (PRACTI)
n Transactional 1-copy serializability

6

Virtual Synchrony Model

crash

G0={p,q} G1={p,q,r,s} G2={q,r,s} G3={q,r,s,t}

p

q

r

s

t
r, s request to join

r,s added; state xfer

t added, state xfer
t requests to join

p fails

... to date, the ... to date, the only only widely adopted model for consistency andwidely adopted model for consistency and
faultfault--tolerance in highly available networked applicationstolerance in highly available networked applications

Quicksilver system

n Quicksilver: Incredibly scalable
infrastructure for publish-subscribe
n Each topic is a group
n Tightly integrated with Windows .net
n Tremendous performance and robustness

n Being developed step by step
n Currently: QSM (scalability and speed)
n Next: QS/2 (QSM + reliability models)

QS/2 Properties Framework

n In QS/2, the type of a group is
n Understood by the operating system
n But implemented by our “properties

framework”
n Each type corresponds to a small code

fragment in a new high-level language
n It looks a bit like SETL (set-valued logic)
n Joint work with Danny Dolev

Operating System Embedding

Technology Needs

n Scalabilityà in multiple dimensions:
#nodes, #groups, churn, failure rates etc.

n Performance à full power of the platform

n Reliabilityà consistent views of the state

n Embeddings à easy and natural to use

n Interoperabilityà integrating different
systems, modularity, local optimization

QuickSilver Scalable Multicast

n Simple ACK-based reliability property
n Managed code (.NET, 95%C#, 5%MC++)
n Entire QuickSilver platform: ~250 KLOC
n Throughputs close to network speeds
n Scalable in multiple dimensions
n Tested with up to ~200 nodes, 8K groups
n Robust against a range of perturbances
n Free: www.cs.cornell.edu/projects/QuickSilver/QSM

7

Making It Scalable

Scalable Dissemination

Regions of Overlap

$%&

%

$

$ %

$ & &

%

%&

$

&

A

B

CAC

BC

ABC

AB

node

region

“region” = set of nodes with “similar” membership

Mapping Groups to Regions (I)

Hierarchy of Protocols (I) Hierarchy of Protocols (II)

8

Scalability in the Number of Nodes

7500

8000

8500

9000

9500

10000

0 50 100 150 200

number of nodes

th
ro

u
g

h
p

u
t (

m
es

sa
g

es
/s

)

1 sender 2 senders

192 nodes x 1.3 GHz CPUs + 512 MB RAM
100 Mbps network

1000-byte messages (no batching), 1 group

latencies: 10..25ms

0

20
40
60
80

100

0 2500 5000 7500 10000

throughput (messages/s)

cp
u
 u

se
d
 (%

)

...

sender receiver

7000

7250

7500

7750

8000

0 3000 6000 9000

number of topics

th
ro

u
g

h
p

u
t

.

6500

7000

7500

8000

0 50 100 150 200

number of nodes

th
ro

u
g

h
p

u
t

 .

one node periodically freezing up

5500
6000

6500
7000

7500
8000

0 50 100 150 200

number of nodes

th
ro

u
g

h
p

u
t

 .

one node experiencing bursty loss

Is a Scalable Protocol Enough?

n So we know how to design a protocol…

n …but building a high-performance pub-
sub engine is much more than that:

n System resources are limited
n Scheduling behaviors matter
n Running in managed environment
n Must tolerate other processes, GC, etc.

Scalability in the Number of Nodes

7500

8000

8500

9000

9500

10000

0 50 100 150 200

number of nodes

th
ro

ug
hp

ut
 (m

es
sa

ge
s/

s)

1 sender 2 senders

Profiler report: Time in QSM

27.00

28.00

29.00

30.00

0 50 100 150 200

number of nodes

%
 t

im
e

Throughput vs. Processor Overhead

0
10
20
30
40
50
60
70
80
90

100

0 2000 4000 6000 8000 10000

throughput (messages/s)

to
ta

l p
ro

ce
ss

o
r

u
ti

liz
at

io
n

 (%
)

sender receiver

Profiler report: Time in CLR

45.00
46.00
47.00
48.00
49.00
50.00

0 50 100 150 200

number of nodes

%
 ti

m
e

GCHeap::Alloc

32

33
34

35
36
37

0 50 100 150 200

number of nodes

%
 t

im
e

(in
cl

u
si

ve
)

gc_heap_garbage_collect

28

29
30
31

32
33

0 50 100 150 200

number of nodes

%
 t

im
e

(in
cl

u
si

ve
)

JIT_NewArr1

22

23

24

25

26

0 50 100 150 200

number of nodes

%
 t

im
e

(i
n

cl
u

si
ve

)

memcopy

10
11
12

13
14
15

0 50 100 150 200

number of nodes

%
 ti

m
e

(e
xc

lu
si

ve
)

Memory in Use on Sender

35

40

45

50

55

0 50 100 150 200

number of nodes

m
em

or
y

(M
B

)

Requests Pending ACKs

7000
8000
9000

10000
11000
12000

0 50 100 150 200

number of nodes

of

 r
eq

ue
st

s

Token Roundtrip Times

0
0.2
0.4
0.6
0.8

1

0 50 100 150 200

number of nodes

ro
un

dt
ri

p
tim

e
[s

]

Time To Acknowledge

0.8
1

1.2

1.4

1.6

0 50 100 150 200

number of nodes

ti
m

e
to

 a
ck

 [
s]

9

O(n) Feedback: Throughput

7400

7600

7800

8000

8200

0 50 100 150 200

number of nodes

th
ro

ug
hp

ut

O(n) Feedback: Pending Ack

5000

7500

10000

12500

0 50 100 150 200

number of nodes

p
en

d
in

g
 a

ck

Token Rate vs. Throughput

7500
7600
7700
7800
7900
8000

0 1 2 3 4 5

token rate

th
ro

u
g

h
p

u
t

Too Fast Ack: Throughput

0

2000
4000

6000
8000

10000

0 500 1000 1500 2000

time [s]

th
ro

u
g

h
p

u
t

Observations

n In managed environment memory is costly
n Buffering, complex data structures etc. matter
n …and garbage collection can be disruptive

n Low latency is the key
n Allows to limit resource usage
n Depends on the protocol…
n …but is also affected by GC, applications etc.
n Can’t be easily substituted

Threads Considered Harmful Looking beyond Quicksilver

n Quicksilver is really two ideas
n One idea is concerned with how to embed

live content into systems like Windows
n As typed channels with file-system names
n Or as pub-sub event topics

n The other concerns scalable support for
group communication in managed settings
n The protocol tricks we’ve just seen

Looking beyond Quicksilver

n Quicksilver supports virtual synchrony
n Hence is incredibly powerful for

coordinated, consistent behavior
n And fast too

n But not everything is ideally matched to
this model of system
n Could gossip mechanisms bring something

of value?

Gossip versus other “models”

n Gossip is good for:
n Emergent structure

n Steady background
tracking of state

n Finding things in
systems that are big
and unstructured

n … but is
n Slow, perhaps costly

in messages

n Vsync is good for:
n Replicating data

n Notifying processes
when events occur

n 2-phase interactions
within groups

n … but needs
n “Configuration”
n Costly setup

10

Emergent structure

n For example, building an overlay
n We might want to overlay a tree on some

set of nodes
n Gossip algorithms for this sort of thing

work incredibly well and need very little
configuration help

n And are extremely robust – they usually
converge in log(N) time using bounded size
messages…

Background state

n Suppose we want to continuously track status
of some kind
n Average load on a system, or average rate of

timeout events
n Closest server of some kind

n Gossip is very good at this kind of continuous
monitoring – we pay a small overhead and
the answer is always at hand.

Finding things

n The problem arises in settings where
n There are many “things”
n State is rather dynamic and we prefer to

keep information close to the owner
n Now and then (rarely) someone does a

search, and we want snappy response

n Gossip-based lookup structures work
really well for these sorts of purposes

Gossip versus other “models”

n Gossip is good for:
n Emergent structure

n Steady background
tracking of state

n Finding things in
systems that are big
and unstructured

n Vsync is good for:
n Replicating data

n Notifying processes
when events occur

n 2-phase interactions
within groups

Unifying the models

n Could we imagine a system that
n Would “look like” Quicksilver within

Windows (an elegant, clean fit)…
n Would offer gossip mechanisms to support

what gossip is best at…
n And would offer group communication with

a range of strong consistency models for
what “they” are best at?

Building QS/3 for Web 3.0…

n Break QS/2 into two modules
n A “framework” that supports plug-in

communication modules
n A module for scalable group communication

n Then design a gossip-based subsystem
that focuses on what gossip does best
n And run it as a second module under the

“Live Objects” layer of QS/2: LO/GO

11

Status?

n QSM exists today and most of the Live
Objects module is running

n QS/2 just starting to limp, can run
protocol framework in simulation mode
n Details from Krzys tomorrow!

n Collaborating with Marin Bertier and
Anne-Marie Kermarrec on LO/GO…

