CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Quicksilver: Multicast for

= Developed by Krzys Ostrowski

= Goal is to reinvent multicast with
modern datacenter and web systems in
mind

= Objective

= Two motivating examples

= Our idea and how it “looks” in Windows
= How Quicksilver works and why it scales
= What next? (perhaps, gossip solutions)
= Summary

= Make it easier for people to build
scalable distributed systems

= Do this by
= Building better technology
= Making it easier to use

= Matching solutions to problems people
really are facing

ﬂ' Motivating examples

= Before we continue, look at some
examples of challenging problems

= Today these are hard to solve
= Our work needs to make them easier

= Motivating examples:
(1) Web 3.0 — “active content”
(2) Data center with clustered services

Motivating example (1)

= Web 1.0: browsers and web sites

= Web 2.0: Google mashups and web
services that let programs interact with
services using Web 1.0 protocols.
Support for social networks.

= Web 3.0: A world of “live content”

Motivating example (1)

& ‘*Jirtua‘l Foom

Ordinary
LIser

Motivating example (1)

“Publish-Subscribe” Services (1)
norm in & game = publistesubscribe topic

plawers in the room
= topic members

legwe the room

=ubsub=onibe
enter the room
= subscrbe
and load sate mane, shoot,
talk = publizh
state updates

player < room sate

= Web 3.0 could be a world of highly
dynamic, high-data rate pub-sub

= But we would need a very different kind
of pub-sub infrastructure
= Existing solutions can't scale this way...
= ... and aren't stable at high data rates
= ... and can’t guarantee “consistency”

Motivating example (1)

= Goal: Make it easy to build a datacenter
= For Google, Amazon, Fnac, eBay, etc

= Assume each center
= Has many computers (perhaps 10,000)
= Runs lots of “services” (hundreds or more)
= Replicates services & data to handle load

= Must also interconnect centers

Motivating example (2)

m

&\ Today’s prevailing solution
; $.
L]

Back-end shared
database system

L Middle tier runs
Clients business logic

Motivating example (2)

= Potentially slow (especially after crashes)
= Many applications find it hard to keep all
their data in databases

= Otherwise, we wouldn't need general
purpose operating systems!

= Can we eliminate the database?

= We'll need to replicate the “state” of the
service in order to scale up

Motivating example (2)

Response?

= Industry is exploring various kinds of in-
memory database solutions

= These eliminate the third tier

Motivating example (2)

Web content generation .4, Web services dispatchers

Eventing middleware

mmmmm

Motivating example (2)

Application structure...

Front end|

Motivating example (2)

= RAPS: A reliable array of partitioned
subservices

= RACS: A reliable array of cloned server
processes

A set of RACS

.]

Pm;\pDF": {x. y. 2} (equivalent replicas)

Here, y gets picked, perhaps based on load

Motivating example (2)

“RAPS of RACS” in Data Centers

Servicesarehosted at data center sbut accessible systemwide

p— "t &

o peiniog o s

s capeo pancpEERy oot

Motivating example (2)

Our examples have similarities

Both replicate data in groups

= ... that have a state (evolved over time)

= ... and aname (or “topic”, like a file name)
= ... updates are done by multicasts

= ... queries can be handled by any member
= There will be a lot of groups

= Reliability need depends on application

ﬂ Our examples have similarities

= A communication channel in Web 3.0 is
similar to a group of processes
= Other roles for groups
= Replication for scale in the services
= Disseminating updates (at high speed)
= Load balanced queries
= Fault-tolerance

Sounds easy?

= After 20 years of research, we still don't
have group communication that
matches these kinds of uses!

= Our solutions

= Are mathematically elegant...

= But have NOT been easy to use

= Sometimes perform poorly

= And are NOT very scalable, either!

Integrating groups with
modern platforms

... and make it easy to use!

= Itisn’'t enough to create a technology

= We also need to have it work in the
same settings that current developers
are expecting

= For Windows, this would be the .net
framework

= Visual studio needs to “understand” our
tools!

Topics = Objects

Topic x = Internet.Enter(“Game X”);
Topicy = x.Enter(“Room X”);
y.OnShoot +=

new EventHandler (this. TurnAround);
while (true)

y.Shoot(new Vector(1,0,0));

Or go further...
= Can we add new kinds of live objects to the
operating system itself?
= Think of a file in Windows
= It has a “type” (the filename extension)
= Using the type Windows can decide which
applications can access it
= Why not add communications channels to
Windows with live content & “state”
= Events change the state over time

e [Bew fgeee Tk fed

W ioyisoeings P E

R T I TR e e

i

Fe] ek | 1 Ky Cffernge

2 B

Folders [|

E ' My Computbm

& Recpde B
5 B v Crames
=1 [Comel Linkesrsity
El 5 Comallinrversty Computar Scanca
[Py epmg Mathine Tranng Chems
L) Kraps's Ofterings
ﬂ Apuml Shuda 2005
WS b

B tialeni Garae

L;} Demsking I & Chusher Adrwristraion
= L]ty Doouments | 5 Expormant Roain

1 S vy Mtk Places i | Frzpss weblog

—

Exploiting the Type System

endpoints

& Typed Publish-Subscribe
k pplication i topic(group

~

rneed \drtﬁal synchrany, must buffer 'aII msgs,
RZ & encryption, msgs paticipate in peerto-
signed by K directorate peer recovery etc.

Vision: A new style of computing

= With groups that could represent...

= A distributed service replicated for fault-
tolerance or availability or performance

= An abstract data type or shared object
= A sharable mapped file
= A “place” where things happen

The “Type” of a Group means
“The properties it supports”

Examples of properties

= Best effort

Virtual synchrony

State machine replication (consensus)
= Byzantine replication (PRACTI)
Transactional 1-copy serializability

Virtual Synchrony Model

Gg={p.a} GHp.ar.g GHar.g GHarsth
p crash
q /\ >
-/ W/ \\ l? | &
s v
r, srequest to join p fails ¥
t r.sadded; state xfer

t requests to join
t added, state xfer

... to date, the only widely adopted model for consistency and
fault-tolerancein highly available networ ked applications

Quicksilver system

= Quicksilver: Incredibly scalable

infrastructure for publish-subscribe

= Each topic is a group

= Tightly integrated with Windows .net

= Tremendous performance and robustness
= Being developed step by step

= Currently: QSM (scalability and speed)

= Next: QS/2 (QSM + reliability models)

= In QS/2, the type of a group is
= Understood by the operating system

= But implemented by our “properties
framework”

= Each type corresponds to a small code
fragment in a new high-level language
= It looks a bit like SETL (set-valued logic)
= Joint work with Danny Dolev

Operating System Embedding

Operating System

QuickSilver
Shell WS-

|4pp 1| [App 2|[User|[Visual Studio

= Scalability - in multiple dimensions:
#nodes, #groups, churn, failure rates etc.

= Performance - full power of the platform
= Reliability - consistent views of the state
= Embeddings - easy and natural to use

= Interoperability - integrating different
systems, modularity, local optimization

QuickSilver Scalable Multicast

= Simple ACK-based reliability property

= Managed code (.NET, 95%C#, 5%MC++)
= Entire QuickSilver platform: ~250 KLOC

= Throughputs close to network speeds

= Scalable in multiple dimensions

= Tested with up to ~200 nodes, 8K groups
= Robust against a range of perturbances

m Free: www.cs.cornell.edu/projects/QuickSilver/QSM

N

Making It Scalable

Scalable Dissemination

Grnupsﬁu..ﬁuuu Groupz Ci..Cim

Groups Bi. .Bim

Regions of Overlap

N AC N ‘ I
~y
AB $&
AB @«o ‘»
j BC node
B B region %

“region” = set of nodeswith“similar’ membership

Mapplng Groups to Regions (1)

lications Group Senders Reqgion Senders

Serd g 4 I & J—»
Sapd b & IO ~8 —
Saad v A P :I:III:III AL | =
Send n B
1M1 ~8c)=p
Serd G -
Serd G o LI
Serd i LI © :
1Im Be |—»

ﬂ H|erarchy of Protocols (1)

inter-region i recoverin Y
irtraregion Protocol
protocal

Hlerarchy of Protocols (I1)

ragion laadar partition laadar intar-partition okan

intra-
parfition

e

/ partition

A 8000 100
Scalability in the Number of Nodes . 2 80 i
5 7750 < /
Q 60 e
10000 e NN ? o L
- 7500
= latencies: 10..25ms 3 \ % 20 &;‘;«37’"
0 £ 7250 O
2 9500 "’4\ , v 0 " " "
o E/ 7000 . . 0 250 5000 7500 10000
a 9000 - — 0 3000 6000 9000 throughput (messages/s)
g 192 nodes x 1.3 GHz CPUs + 512 MB RAM number of topics Im‘
= 8500 100 Mbps network
_C; - 1000-byte messages (no batching), 1 group y 8000 M y g N
3 8000 b o 2 NESE N 2 70 2 o0 "
£ I St e SNEEEEE 2 . 2 &0 L
2 7000 < | @ v
7500 T T T = £ 6000
0 0 100 150 200 0 50 100 150 200 0 0 100 150 200
number of nodes number of nodes number of nodes
—-1 sender =2 senders -»- one node periodically freezing up s one node experiencing burstylos#
Scalability in the Number of Nodes Throughput vs. Processor Overhead
10000 € -
R e - H #
Is a Scalable Protocol Enough? N S r——
________ 5 a0 a4
2 8 = il
. ? o | E—y e [—
£ R =N
= So we know how to design a protocol... S
00
0 M 100 150 200 o a0 w0 &0 10000
= ...but building a high-performance pub- e B
sub englne is much more than that: Profiler report: Time in QSM Profiler report: Time in CLR
= System resources are limited 30.00 A~ 50.00
: . * 49.00 -—p
= Scheduling behaviors matter £ 29.00 _,\ £ 48.00 _/'/
L . S 28.00 BN < 47.00 —_—
= Running in managed environment s 28 A SSVY = 46,00 J =’
= Must tolerate other processes, GC, etc. 2700 T T 45.00 T
0 50 100 150 200 0 50 100 150 200
number of nodes number of nodes
GCHeap::Alloc gc_heap_garbage_collect Memory in Use on Sender Requests Pending ACKs
T 37 T 33 p:- .55 12000 gy
3 36 /:‘,’ G 32 /‘J 25 i % 11000 —x
° 35 — S 31 g S 10000 .~
g . g 7 2451 g vt
= 34 i < 30 o s _ S 9000 7
E s34 £ 20 T g 40 T 5 8000 =y
R 32 T T T L 28 - T T T 35 T T T 7000 T T T
0 50 100 150 200 0 5 100 150 200 0 50 100 150 200 0 50 100 150 200
number of nodes number of nodes number of nodes number of nodes
JIT_NewArrl memcopy Time To Acknowledge Token Roundtrip Times
v 26 n T35 . 1.6 s Z 1
@ @a — [o
52 — > 14 red %14 g 08
: % N ¢ 13 o 3 e = 06 =
£ 24 s 3 s ol2 > 204 -
° N4 v 12 T == A L £ 0 ~
E 2 AW 4 Enq= E —a 2 02
L 22 T T T < 10 T T T <08+ T T T 2 0 T T T
0 50 100 150 200 0 50 100 150 200 0 % 100 150 200 0 5 100 150 200
number of nodes number of nodes number of nodes number of nodes

Token Rate vs. Throughput O(n) Feedback: Pending Ack

8000 12500
S 7900 S g
2 7800 1 ——|| & 10000 . o
3 7700 i 5 7500 I ey
= 7600 3 S W
£ 2 -

7500 T — 5000 . . .

0 1 2 3 4 5 0 50 100 150 200
token rate number of nodes

O(n) Feedback: Throughput Too Fast Ack: Throughput

8200 = 10000
3 8000 — S 8000
£ ey \/"k £ 6000
© 7800 z S E
2 e i 2 4000
£ 7600 £ 2000
7400 T T T 0
0 50 100 150 200 0 500 1000 1500 2000
number of nodes time [s]

Observations

= In managed environment memory is costly
= Buffering, complex data structures etc. matter
= ..and garbage collection can be disruptive

= Low latency is the key
= Allows to limit resource usage
= Depends on the protocol...
= ..but is also affected by GC, applications etc.
= Can't be easily substituted

Jock
Ioplicatione 'P’Jlfrﬁ:;if Core Thread :‘wsfmngj
| I(blc-:]::irg,.med,'ldeqm;e

L

otber regicter / . Alarm

domrcall feed - begin begn e
1 I \ seryd Teceims

ot] Tan]

N receiredd Sochets feend— HIC

T

Looking beyond Quicksilver
= Quicksilver is really two ideas
= One idea is concerned with how to embed
live content into systems like Windows
= As typed channels with file-system names
= Or as pub-sub event topics
= The other concerns scalable support for
group communication in managed settings
= The protocol tricks we've just seen

ﬂ' Looking beyond Quicksilver

= Quicksilver supports virtual synchrony

= Hence is incredibly powerful for
coordinated, consistent behavior

= And fast too
= But not everything is ideally matched to
this model of system

= Could gossip mechanisms bring something
of value?

Gossip versus other “models”

= Gossip is good for: = Vsync is good for:
= Emergent structure Replicating data
= Steady background Notifying processes
tracking of state when events occur
= Finding things in 2-phase interactions
systems that are big within groups
and unstructured = ... but needs

= .. butis “Configuration”

= Slow, perhaps costly Costly setup
in messages

& Emergent structure

= For example, building an overlay

= We might want to overlay a tree on some
set of nodes

= Gossip algorithms for this sort of thing
work incredibly well and need very little
configuration help

= And are extremely robust — they usually
converge in log(N) time using bounded size
messages...

= Suppose we want to continuously track status
of some kind
= Average load on a system, or average rate of

timeout events

= Closest server of some kind

= Gossip is very good at this kind of continuous
monitoring — we pay a small overhead and
the answer is always at hand.

= The problem arises in settings where
= There are many “things”
= State is rather dynamic and we prefer to
keep information close to the owner
= Now and then (rarely) someone does a
search, and we want snappy response
= Gossip-based lookup structures work
really well for these sorts of purposes

= Gossip is good for: = Vsync is good for:

= Emergent structure

= Steady background
tracking of state

= Finding things in
systems that are big
and unstructured

= Replicating data

= Notifying processes
when events occur

= 2-phase interactions
within groups

ﬂ' Unifying the models

= Could we imagine a system that

= Would “look like” Quicksilver within
Windows (an elegant, clean fit)...

= Would offer gossip mechanisms to support
what gossip is best at...

= And would offer group communication with
a range of strong consistency models for
what “they” are best at?

= Break QS/2 into two modules

= A “framework” that supports plug-in
communication modules

= A module for scalable group communication
= Then design a gossip-based subsystem
that focuses on what gossip does best

= And run it as a second module under the
“Live Objects” layer of QS/2: LO/GO

10

= QSM exists today and most of the Live
Objects module is running

= QS/2 just starting to limp, can run
protocol framework in simulation mode
= Details from Krzys tomorrow!

= Collaborating with Marin Bertier and
Anne-Marie Kermarrec on LO/GO...

11

