
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Virtual Synchrony

n A powerful programming model!
n Called virtual synchrony
n It offers

n Process groups with state transfer, automated
fault detection and membership reporting

n Ordered reliable multicast, in several flavors

n Extremely good performance

Why “virtual” synchrony?

n What would a synchronous execution
look like?

n In what ways is a “virtual” synchrony
execution not the same thing?

A synchronous execution

p

q

r

s

t

u

n With true synchrony executions run in
genuine lock-step.

Virtual Synchrony at a glance

n With virtual synchrony executions only
look “lock step” to the application

p

q

r

s

t

u

Virtual Synchrony at a glance

p

q

r

s

t

u

n We use the weakest (hence fastest)
form of communication possible

2

Chances to “weaken” ordering

n Suppose that any conflicting updates are
synchronized using some form of locking
n Multicast sender will have mutual exclusion
n Hence simply because we used locks, cbcast

delivers conflicting updates in order they were
performed!

n If our system ever does see concurrent
multicasts… they must not have conflicted.
So it won’t matter if cbcast delivers them in
different orders at different recipients!

Causally ordered updates

n Each thread corresponds to a different lock

n In effect: red “events” never conflict with
green ones!

p

r

s

t
1

2

3

4

5

1

2

In general?

n Replace “safe” (dynamic uniformity)
with a standard multicast when possible

n Replace abcastwith cbcast
n Replace cbcast with fbcast

n Unless replies are needed, don’t wait
for replies to a multicast

Why “virtual” synchrony?

n The user sees what looks like a
synchronous execution
n Simplifies the developer’s task

n But the actual execution is rather
concurrent and asynchronous
n Maximizes performance
n Reduces risk that lock-step execution will

trigger correlated failures

Correlated failures

n Why do we claim that virtual synchrony
makes these less likely?
n Recall that many programs are buggy
n Often these are Heisenbugs (order sensitive)

n With lock-step execution each group member
sees group events in identical order
n So all die in unison

n With virtual synchrony orders differ
n So an order-sensitive bug might only kill one

group member!

Programming with groups

n Many systems just have one group
n E.g. replicated bank servers
n Cluster mimics one highly reliable server

n But we can also use groups at finer
granularity
n E.g. to replicate a shared data structure
n Now one process might belong to many groups

n A further reason that different processes
might see different inputs and event orders

3

Embedding groups into “tools”

n We can design a groups API:
n pg_join(), pg_leave(), cbcast()…

n But we can also use groups to build
other higher level mechanisms
n Distributed algorithms, like snapshot
n Fault-tolerant request execution
n Publish-subscribe

Distributed algorithms

n Processes that might participate join an
appropriate group

n Now the group view gives a simple
leader election rule
n Everyone sees the same members, in the

same order, ranked by when they joined
n Leader can be, e.g., the “oldest” process

Distributed algorithms

n A group can easily solve consensus
n Leader multicasts: “what’s your input”?
n All reply: “Mine is 0. Mine is 1”
n Initiator picks the most common value and

multicasts that: the “decision value”
n If the leader fails, the new leader just

restarts the algorithm

n Puzzle: Does FLP apply here?

Distributed algorithms

n A group can easily do consistent
snapshot algorithm
n Either use cbcast throughout system, or

build the algorithm over gbcast
n Two phases:

n Start snapshot: a first cbcast
n Finished: a second cbcast, collect process

states and channel logs

Distributed algorithms: Summary

n Leader election
n Consensus and other forms of

agreement like voting
n Snapshots, hence deadlock detection,

auditing, load balancing

More tools: fault-tolerance

n Suppose that we want to offer clients “fault-
tolerant request execution”
n We can replace a traditional service with a group

of members
n Each request is assigned to a primary (ideally,

spread the work around) and a backup
n Primary sends a “cc” of the response to the request to

the backup
n Backup keeps a copy of the request and steps in

only if the primary crashes before replying
n Sometimes called “coordinator/cohort” just to

distinguish from “primary/backup”

4

Publish / Subscribe

n Goal is to support a simple API:
n Publish(“topic”, message)
n Subscribe(“topic”, event_hander)

n We can just create a group for each
topic
n Publish multicasts to the group
n Subscribers are the members

Scalability warnings!

n Many existing group communication systems
don’t scale incredibly well
n E.g. JGroups, Ensemble, Spread

n Group sizes limited to perhaps 50-75 members
n And individual processes limited to joining perhaps

50-75 groups (Spread: see next slide)

n Overheads soar as these sizes increase
n Each group runs protocols oblivious of the others,

and this creates huge inefficiency

Publish / Subscribe issue?

n We could have thousands of topics!
n Too many to directly map topics to groups

n Instead map topics to a smaller set of groups.
n SPREAD system calls these “lightweight” groups

n Mapping will result in inaccuracies… Filter
incoming messages to discard any not actually
destined to the receiver process

n Cornell’s new QuickSilver system will instead
directly support immense numbers of groups

Other “toolkit” ideas

n We could embed group communication
into a framework in a “transparent” way
n Example: CORBA fault-tolerance

specification does lock-step replication of
deterministic components

n The client simply can’t see failures
n But the determinism assumption is painful, and

users have been unenthusiastic
n And exposed to correlated crashes

Other similar ideas

n There was some work on embedding
groups into programming languages
n But many applications want to use them to

link programs coded in different languages
and systems

n Hence an interesting curiosity but just a
curiosity

n More work is needed on the whole issue

Existing toolkits: challenges

n Tensions between threading and
ordering
n We need concurrency (threads) for perf.
n Yet we need to preserve the order in which

“events” are delivered

n This poses a difficult balance for the
developers

5

Preserving order

Group Communication Subsystem: A library linked to the
application, perhaps with its own daemon processes

G1={p ,q} m3 m4 G2={p,q,r}

Time →
application

p

q

r

m1 m2

m3 m4

The tradeoff

n If we deliver these upcalls in separate
threads, concurrency increases but
order could be lost

n If we deliver them as a list of event,
application receives events in order but
if it uses thread pools (think SEDA), the
order is lost

Solution used in Horus

n This system
n Delivered upcalls using an event model

n Each event was numbered
n User was free to

n Run a single-threaded app
n Use a SEDA model

n Toolkit included an “enter/leave region in
order” synchronization primitive
n Forced threads to enter in event-number order

Other toolkit “issues”

n Does the toolkit distinguish members of a
group from clients of that group?
n In Isis system, a client of a group was able to

multicast to it, with vsync properties
n But only members received events

n Does the system offer properties “across
group boundaries”?
n For example, using cbcast in multiple groups

Features of major virtual
synchrony platforms

n Isis: First and no longer widely used
n But was perhaps the most successful; has

major roles in NYSE, Swiss Exchange,
French Air Traffic Control system (two
major subsystems of it), US AEGIS Naval
warship

n Also was first to offer a publish-subscribe
interface that mapped topics to groups

Features of major virtual
synchrony platforms

n Totem and Transis
n Sibling projects, shortly after Isis
n Totem (UCSB) went on to become Eternal

and was the basis of the CORBA fault-
tolerance standard

n Transis (Hebrew University) became a
specialist in tolerating partitioning failures,
then explored link between vsync and FLP

6

Features of major virtual
synchrony platforms

n Horus, JGroups and Ensemble
n All were developed at Cornell: successors to Isis
n These focus on flexible protocol stack linked directly into

application address space
n A stack is a pile of micro-protocols
n Can assemble an optimized solution fitted to specific needs of

the application by plugging together “properties this application
requires”, lego-style

n The system is optimized to reduce overheads of this
compositional style of protocol stack

n JGroups is very popular.
n Ensemble is somewhat popular and supported by a user

community. Horus works well but is not widely used.

Horus/JGroups/Ensemble
protocol stacks

Application belongs to process group

comm
nak
frag

mbrshp
fc

comm
comm
nak

frag

comm
nak
frag

mbrshp

parcld

comm
nak
frag

mbrshp
merge

totaltotal

JGroups (part of JBoss)

n Developed by Bela Ban
n Implements group multicast tools

n Virtual synchrony was on their “to do” list
n But they have group views, multicast, weaker

forms of reliability

n Impressive performance!
n Very popular for Java community

n Downloads from www.JGroups.org

Spread Toolkit

n Developed at John Hopkins
n Focused on a sort of “RISC” approach

n Very simple architecture and system
n Fairly fast, easy to use, rather popular

n Supports one large group within which
user sees many small “lightweight”
subgroups that seem to be free-standing

n Protocols implemented by Spread “agents”
that relay messages to apps

Summary?

n Role of a toolkit is to package commonly
used, popular functionality into simple API
and programming model

n Group communication systems have been
more popular when offered in toolkits
n If groups are embedded into programming

languages, we limit interoperability
n If groups are used to transparently replicate

deterministic objects, we’re too inflexible
n Many modern systems let you match the

protocol to your application’s requirements

