
1

CS514: Intermediate Course 
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Virtual Synchrony

n A powerful programming model!
n Called virtual synchrony
n It offers

n Process groups with state transfer, automated 
fault detection and membership reporting

n Ordered reliable multicast, in several flavors

n Extremely good performance

Why “virtual” synchrony?

n What would a synchronous execution 
look like?

n In what ways is a “virtual” synchrony 
execution not the same thing?

A synchronous execution
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n With true synchrony executions run in 
genuine lock-step.  

Virtual Synchrony at a glance

n With virtual synchrony executions only 
look “lock step” to the application
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Virtual Synchrony at a glance
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n We use the weakest (hence fastest) 
form of communication possible
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Chances to “weaken” ordering

n Suppose that any conflicting updates are 
synchronized using some form of locking
n Multicast sender will have mutual exclusion
n Hence simply because we used locks, cbcast

delivers conflicting updates in order they were 
performed!

n If our system ever does see concurrent 
multicasts… they must not have conflicted.  
So it won’t matter if cbcast delivers them in 
different orders at different recipients!

Causally ordered updates

n Each thread corresponds to a different lock

n In effect: red “events” never conflict with 
green ones!
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In general?

n Replace “safe” (dynamic uniformity) 
with a standard multicast when possible

n Replace abcastwith cbcast
n Replace cbcast with fbcast

n Unless replies are needed, don’t wait 
for replies to a multicast

Why “virtual” synchrony?

n The user sees what looks like a 
synchronous execution
n Simplifies the developer’s task

n But the actual execution is rather 
concurrent and asynchronous
n Maximizes performance
n Reduces risk that lock-step execution will 

trigger correlated failures

Correlated failures

n Why do we claim that virtual synchrony 
makes these less likely?
n Recall that many programs are buggy
n Often these are Heisenbugs (order sensitive)

n With lock-step execution each group member 
sees group events in identical order
n So all die in unison

n With virtual synchrony orders differ
n So an order-sensitive bug might only kill one 

group member!

Programming with groups

n Many systems just have one group
n E.g. replicated bank servers
n Cluster mimics one highly reliable server

n But we can also use groups at finer 
granularity
n E.g. to replicate a shared data structure
n Now one process might belong to many groups

n A further reason that different processes 
might see different inputs and event orders
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Embedding groups into “tools”

n We can design a groups API:
n pg_join(), pg_leave(), cbcast()…

n But we can also use groups to build 
other higher level mechanisms
n Distributed algorithms, like snapshot
n Fault-tolerant request execution
n Publish-subscribe

Distributed algorithms

n Processes that might participate join an 
appropriate group

n Now the group view gives a simple 
leader election rule
n Everyone sees the same members, in the 

same order, ranked by when they joined
n Leader can be, e.g., the “oldest” process

Distributed algorithms

n A group can easily solve consensus
n Leader multicasts: “what’s your input”?
n All reply: “Mine is 0.  Mine is 1”
n Initiator picks the most common value and 

multicasts that: the “decision value”
n If the leader fails, the new leader just 

restarts the algorithm

n Puzzle: Does FLP apply here?

Distributed algorithms

n A group can easily do consistent 
snapshot algorithm
n Either use cbcast throughout system, or 

build the algorithm over gbcast
n Two phases:

n Start snapshot: a first cbcast
n Finished: a second cbcast, collect process 

states and channel logs

Distributed algorithms: Summary

n Leader election
n Consensus and other forms of 

agreement like voting
n Snapshots, hence deadlock detection, 

auditing, load balancing

More tools: fault-tolerance

n Suppose that we want to offer clients “fault-
tolerant request execution”
n We can replace a traditional service with a group 

of members
n Each request is assigned to a primary (ideally, 

spread the work around) and a backup
n Primary sends a “cc” of the response to the request to 

the backup
n Backup keeps a copy of the request and steps in 

only if the primary crashes before replying
n Sometimes called “coordinator/cohort” just to 

distinguish from “primary/backup”
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Publish / Subscribe

n Goal is to support a simple API:
n Publish(“topic”, message)
n Subscribe(“topic”, event_hander)

n We can just create a group for each 
topic
n Publish multicasts to the group
n Subscribers are the members

Scalability warnings!

n Many existing group communication systems 
don’t scale incredibly well
n E.g. JGroups, Ensemble, Spread

n Group sizes limited to perhaps 50-75 members
n And individual processes limited to joining perhaps 

50-75 groups (Spread: see next slide)

n Overheads soar as these sizes increase
n Each group runs protocols oblivious of the others, 

and this creates huge inefficiency

Publish / Subscribe issue?

n We could have thousands of topics!
n Too many to directly map topics to groups

n Instead map topics to a smaller set of groups.
n SPREAD system calls these “lightweight” groups

n Mapping will result in inaccuracies… Filter 
incoming messages to discard any not actually 
destined to the receiver process

n Cornell’s new QuickSilver system will instead 
directly support immense numbers of groups

Other “toolkit” ideas

n We could embed group communication 
into a framework in a “transparent” way
n Example: CORBA fault-tolerance 

specification does lock-step replication of 
deterministic components

n The client simply can’t see failures
n But the determinism assumption is painful, and 

users have been unenthusiastic
n And exposed to correlated crashes

Other similar ideas

n There was some work on embedding 
groups into programming languages
n But many applications want to use them to 

link programs coded in different languages 
and systems

n Hence an interesting curiosity but just a 
curiosity

n More work is needed on the whole issue

Existing toolkits: challenges

n Tensions between threading and 
ordering
n We need concurrency (threads) for perf.
n Yet we need to preserve the order in which 

“events” are delivered

n This poses a difficult balance for the 
developers
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Preserving order

Group Communication Subsystem: A library linked to the
application, perhaps with its own daemon processes

G1={p ,q} m3 m4 G2={p,q,r}

Time →
application

p

q

r

m1 m2

m3 m4

The tradeoff

n If we deliver these upcalls in separate 
threads, concurrency increases but 
order could be lost

n If we deliver them as a list of event, 
application receives events in order but 
if it uses thread pools (think SEDA), the 
order is lost  

Solution used in Horus

n This system
n Delivered upcalls using an event model

n Each event was numbered
n User was free to

n Run a single-threaded app
n Use a SEDA model

n Toolkit included an “enter/leave region in 
order” synchronization primitive
n Forced threads to enter in event-number order

Other toolkit “issues”

n Does the toolkit distinguish members of a 
group from clients of that group?
n In Isis system, a client of a group was able to 

multicast to it, with vsync properties
n But only members received events

n Does the system offer properties “across 
group boundaries”?
n For example, using cbcast in multiple groups

Features of major virtual 
synchrony platforms

n Isis: First and no longer widely used
n But was perhaps the most successful; has 

major roles in NYSE, Swiss Exchange, 
French Air Traffic Control system (two 
major subsystems of it), US AEGIS Naval 
warship

n Also was first to offer a publish-subscribe 
interface that mapped topics to groups

Features of major virtual 
synchrony platforms

n Totem and Transis
n Sibling projects, shortly after Isis
n Totem (UCSB) went on to become Eternal 

and was the basis of the CORBA fault-
tolerance standard

n Transis (Hebrew University) became a 
specialist in tolerating partitioning failures, 
then explored link between vsync and FLP



6

Features of major virtual 
synchrony platforms

n Horus, JGroups and Ensemble
n All were developed at Cornell: successors to Isis
n These focus on flexible protocol stack linked directly into 

application address space
n A stack is a pile of micro-protocols
n Can assemble an optimized solution fitted to specific needs of 

the application by plugging together “properties this application 
requires”, lego-style

n The system is optimized to reduce overheads of this 
compositional style of protocol stack

n JGroups is very popular.  
n Ensemble is somewhat popular and supported by a user 

community.  Horus works well but is not widely used.

Horus/JGroups/Ensemble 
protocol stacks

Application belongs to process group
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JGroups (part of JBoss)

n Developed by Bela Ban
n Implements group multicast tools

n Virtual synchrony was on their “to do” list
n But they have group views, multicast, weaker 

forms of reliability

n Impressive performance! 
n Very popular for Java community

n Downloads from www.JGroups.org

Spread Toolkit

n Developed at John Hopkins
n Focused on a sort of “RISC” approach

n Very simple architecture and system
n Fairly fast, easy to use, rather popular

n Supports one large group within which 
user sees many small “lightweight” 
subgroups that seem to be free-standing

n Protocols implemented by Spread “agents” 
that relay messages to apps

Summary?

n Role of a toolkit is to package commonly 
used, popular functionality into simple API 
and programming model

n Group communication systems have been 
more popular when offered in toolkits
n If groups are embedded into programming 

languages, we limit interoperability
n If groups are used to transparently replicate 

deterministic objects, we’re too inflexible
n Many modern systems let you match the 

protocol to your application’s requirements


