
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Reminder: Group Communication

Terminology: group create, view, join with state transfer,
multicast, client-to-group communication
This is the “dynamic” membership model: processes come & go

p

q

r

s

t

u

Recipe for a group
communication system

Back one pie shell
Build a service that can track group membership
and report “view changes”

Prepare 2 cups of basic pie filling
Develop a simple fault-tolerant multicast protocol

Add flavoring of your choice
Extend the multicast protocol to provide desired
delivery ordering guarantees

Fill pie shell, chill, and serve
Design an end-user “API” or “toolkit”. Clients will
“serve themselves”, with various goals…

Role of GMS

We’ll add a new system service to our
distributed system, like the Internet
DNS but with a new role

Its job is to track membership of groups
To join a group a process will ask the GMS
The GMS will also monitor members and
can use this to drop them from a group
And it will report membership changes

Group picture… with GMS

p

q

r

s

t

u

GMS

P requests: I wish
to join or create

group “X”.

GMS responds: Group
X created with you as

the only member

T to GMS: What is
current membership

for group X?

GMS to T: X = {p} r joins…

GMS notices that q
has failed (or q

decides to leave)
Q joins, now X = {p,q}. Since p

is the oldest prior member, it
does a state transfer to q

Group membership service
Runs on some sensible place, like the server
hosting your DNS
Takes as input:

Process “join” events
Process “leave” events
Apparent failures

Output:
Membership views for group(s) to which those
processes belong
Seen by the protocol “library” that the group
members are using for communication support

2

Issues?

The service itself needs to be fault-
tolerant

Otherwise our entire system could be
crippled by a single failure!

So we’ll run two or three copies of it
Hence Group Membership Service (GMS)
must run some form of protocol (GMP)

Group picture… with GMS

p

q

r

s

t

GMS

Group picture… with GMS

p

q

r

s

t

GMS0
GMS1
GMS2

Let’s start by focusing on how GMS tracks its
own membership. Since it can’t just ask the

GMS to do this it needs to have a special
protocol for this purpose. But only the GMS runs
this special protocol, since other processes just

rely on the GMS to do this job
In fact it will end up using those reliable

multicast protocols to replicate membership
information for other groups that rely on it

The GMS is a group too. We’ll build it first and
then will use it when building reliable multicast

protocols.

Approach

We’ll assume that GMS has members
{p,q,r} at time t
Designate the “oldest” of these as the
protocol “leader”

To initiate a change in GMS membership,
leader will run the GMP
Others can’t run the GMP; they report
events to the leader

GMP example

Example:
Initially, GMS consists of {p,q,r}
Then q is believed to have crashed

p

q

r

Failure detection: may make mistakes

Recall that failures are hard to
distinguish from network delay

So we accept risk of mistake
If p is running a protocol to exclude q
because “q has failed”, all processes that
hear from p will cut channels to q

Avoids “messages from the dead”

q must rejoin to participate in GMS again

3

Basic GMP

Someone reports that “q has failed”
Leader (process p) runs a 2-phase
commit protocol

Announces a “proposed new GMS view”
Excludes q, or might add some members who
are joining, or could do both at once

Waits until a majority of members of
current view have voted “ok”
Then commits the change

GMP example

Proposes new view: {p,r} [-q]
Needs majority consent: p itself, plus one
more (“current” view had 3 members)
Can add members at the same time

p

q

r

Proposed V1 = {p,r}

V0 = {p,q,r}
OK

Commit V1

V1 = {p,r}

Special concerns?

What if someone doesn’t respond?
P can tolerate failures of a minority of
members of the current view

New first-round “overlaps” its commit:
“Commit that q has left. Propose add s and drop r”

P must wait if it can’t contact a majority
Avoids risk of partitioning

What if leader fails?

Here we do a 3-phase protocol
New leader identifies itself based on age ranking
(oldest surviving process)
It runs an inquiry phase

“The adored leader has died. Did he say anything to you
before passing away?”
Note that this causes participants to cut connections to
the adored previous leader

Then run normal 2-phase protocol but “terminate”
any interrupted view changes leader had initiated

GMP example

New leader first sends an inquiry
Then proposes new view: {r,s} [-p]
Needs majority consent: q itself, plus one more
(“current” view had 3 members)
Again, can add members at the same time

p

q

r

Proposed V1 = {r,s}

V0 = {p,q,r}
OK

Commit V1

V1 = {r,s}

Inquire [-p]

OK: nothing was pending

Properties of GMP

We end up with a single service shared
by the entire system

In fact every process can participate
But more often we just designate a few
processes and they run the GMP

Typically the GMS runs the GMP and
also uses replicated data to track
membership of other groups

4

Use of GMS

A process t, not in the GMS, wants to
join group “Upson309_status”

It sends a request to the GMS
GMS updates the “membership of group
Upson309_status” to add t
Reports the new view to the current
members of the group, and to t
Begins to monitor t’s health

Processes t and u “using” a GMS

The GMS contains p, q, r (and later, s)
Processes t and u want to form some other group, but
use the GMS to manage membership on their behalf

p

q

r

s

t

u

We have our pie shell

Now we’ve got a group membership
service that reports identical views to all
members, tracks health
Can we build a reliable multicast?

Unreliable multicast

Suppose that to send a multicast, a
process just uses an unreliable protocol

Perhaps IP multicast
Perhaps UDP point-to-point
Perhaps TCP

… some messages might get dropped.
If so it eventually finds out and resends
them (various options for how to do it)

Concerns if sender crashes

Perhaps it sent some message and only
one process has seen it
We would prefer to ensure that

All receivers, in “current view”
Receive any messages that any receiver
receives (unless the sender and all
receivers crash, erasing evidence…)

An interrupted multicast

A message from q to r was “dropped”
Since q has crashed, it won’t be resent

p

q

r

s

5

Flush protocol

We say that a message is unstable if
some receiver has it but (perhaps)
others don’t

For example, q’s message is unstable at
process r

If q fails we want to “flush” unstable
messages out of the system

How to do this?

Easy solution: all-to-all echo
When a new view is reported
All processes echo any unstable messages on all
channels on which they haven’t received a copy of
those messages

A flurry of O(n2) messages

Note: must do this for all messages, not just
those from the failed process. This is
because more failures could happen in future

An interrupted multicast

p had an unstable message, so it echoed
it when it saw the new view

p

q

r

s

Event ordering

We should first deliver the multicasts to
the application layer and then report
the new view
This way all replicas see the same
messages delivered “in” the same view

Some call this “view synchrony”

State transfer

At the instant the new view is reported,
a process already in the group makes a
checkpoint
Sends point-to-point to new member(s)
It (they) initialize from the checkpoint

State transfer and reliable multicast

After re-ordering, it looks like each multicast is reliably
delivered in the same view at each receiver
Note: if sender and all receivers fails, unstable message
can be “erased” even after delivery to an application

This is a price we pay to gain higher speed

p

q

r

s

6

What about ordering?

It is trivial to make our protocol FIFO wrt
other messages from same sender

If we just number messages from each sender,
they will “stay” in order

Concurrent messages are unordered
If sent by different senders, messages can be
delivered in different orders at different receivers

This is the protocol called “fbcast”

Preview of coming attractions

Next time we’ll add richer ordering
properties
Group communication platforms often
offer a range

Idea is that developer will pick the
cheapest solution that meets needs of a
given use

