CS514: Intermediate Course
* in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

!.| Reminder: Group Communication

AT
| I

u

= Terminology: group create, view, join with state transfer,
multicast, client-to-group communication

= This is the “dynamic” membership model: processes come & go

Recipe for a group
communication system

= Back one pie shell

= Build a service that can track group membership
and report "view changes”

= Prepare 2 cups of basic pie filling
= Develop a simple fault-tolerant multicast protocol
= Add flavoring of your choice
= Extend the multicast protocol to provide desired
delivery ordering guarantees
= Fill pie shell, chill, and serve

= Design an end-user "API” or “toolkit”, Clients will
"serve themselves”, with varfous goals...

!.’ Role of GMS

= We'll add a new system service to our
distributed system, like the Internet
DNS but with a new role
= Its job is to track membership of groups
= To join a group a process will ask the GMS

= The GMS will also monitor members and
can use this to drop them from a group

= And it will report membership changes

!.’ Group picture... with GMS

Group membership service

= Runs on some sensible place, like the server
hosting your DNS
= Takes as input:
= Process “join” events
= Process “leave” events
= Apparent failures
= Output:
= Membership views for group(s) to which those
processes belong
= Seen by the protocol “library” that the group
members are using for communication support




,_.’ Issues?

= The service J/tself needs to be fault-
tolerant

= Otherwise our entire system could be
crippled by a single failure!

= So we'll run two or three copies of it

= Hence Group Membership Service (GMS)
must run some form of protocol (GMP)

‘_.| Group picture... with GMS

VL ]
T

[

,_.’ Group picture... with GMS

q

,_.’ Approach

= We'll assume that GMS has members
{p,q,r} attimet
= Designate the “oldest” of these as the
protocol “leader”
= To initiate a change in GMS membership,
leader will run the GMP
= Others can't run the GMP; they report
events to the leader

‘_.’ GMP example
; '—*

= Example:
= Initially, GMS consists of {p,q,r}
= Then q is believed to have crashed

i Failure detection: may make mistakes

= Recall that failures are hard to
distinguish from network delay
= S0 we accept risk of mistake
= If p is running a protocol to exclude q
because “q has failed”, all processes that
hear from p will cut channels to q
= Avoids “messages from the dead”

= g must rejoin to participate in GMS again




1 Basic GMP

= Someone reports that “q has failed”

= Leader (process p) runs a 2-phase
commit protocol
= Announces a “proposed new GMS view"”

= Excludes g, or might add some members who
are joining, or could do both at once

= Waits until a majority of members of
current view have voted “ok”

= Then commits the change

:.| GMP example

Proposed V, = {p,r} Commit V;
p
r
oK
Vo = {p.ar} Vi =A{pry

= Proposes new view: {p,r} [-q]

= Needs majority consent: p itself, plus one
more (“current” view had 3 members)

= Can add members at the same time

5 Special concerns?

= What if someone doesn’t respond?
= P can tolerate failures of a minority of
members of the current view

» New first-round “overlaps” its commit:
“Commit that g has left. Propose add s and drop r”

= P must wait if it can’t contact a majority
= Avoids risk of partitioning

:.’ What if leader fails?

= Here we do a 3-phase protocol
= New leader identifies itself based on age ranking
(oldest surviving process)
= It runs an inquiry phase
= "The adored leader has died. Did he say anything to you
before passing away?”
= Note that this causes participants to cut connections to
the adored previous leader
= Then run normal 2-phase protocol but “terminate”
any interrupted view changes leader had initiated

3 GMP example

P —

q Inquire [-p] Proposed V, = {r,s} Commit V,
) Nz |

OK: nothing was pending oK
Vo ={p.ar} Vi ={rs}

= New leader first sends an inquiry
= Then proposes new view: {r,s} [-p]

= Needs majority consent: g itself, plus one more
(“current” view had 3 members)

= Again, can add members at the same time

:.| Properties of GMP

= We end up with a single service shared
by the entire system
= In fact every process can participate
= But more often we just designate a few

processes and they run the GMP

= Typically the GMS runs the GMP and
also uses replicated data to track
membership of other groups




* Use of GMS

= A process t, not in the GMS, wants to
join group “Upson309_status”
= It sends a request to the GMS

= GMS updates the “membership of group
Upson309_status” to add t

= Reports the new view to the current
members of the group, and to t

= Begins to monitor t's health

* Processes t and u “using” a GMS
I

v /

u

= The GMS contains p, q, r (and later, s)

= Processes t and u want to form some other group, but
use the GMS to manage membership on their behalf

* We have our pie shell

= Now we've got a group membership
service that reports identical views to all
members, tracks health

= Can we build a reliable multicast?

* Unreliable multicast

= Suppose that to send a multicast, a
process just uses an unreliable protocol
= Perhaps IP multicast
= Perhaps UDP point-to-point
= Perhaps TCP

= ... Some messages might get dropped.
If so it eventually finds out and resends
them (various options for how to do it)

* Concerns if sender crashes

= Perhaps it sent some message and only
one process has seen it

= We would prefer to ensure that
= All receivers, in “current view”

= Receive any messages that any receiver
receives (unless the sender and all
receivers crash, erasing evidence...)

* An interrupted multicast

= A message from q to r was “dropped”
= Since q has crashed, it won't be resent




* Flush protocol

= We say that a message is unstable if
some receiver has it but (perhaps)
others don't
= For example, g's message is unstable at
process r
= If g fails we want to “flush” unstable
messages out of the system

* How to do this?

= Easy solution: all-to-all echo
= When a new view is reported

= All processes echo any unstable messages on all
channels on which they haven't received a copy of
those messages

= A flurry of O(n2) messages

» Note: must do this for all messages, not just
those from the failed process. This is
because more failures could happen in future

* An interrupted multicast

= p had an unstable message, so it echoed
it when it saw the new view

* Event ordering

= We should first deliver the multicasts to
the application layer and then report
the new view

= This way all replicas see the same
messages delivered “in” the same view
= Some call this “view synchrony”

* State transfer

= At the instant the new view is reported,
a process already in the group makes a
checkpoint

= Sends point-to-point to new member(s)
= It (they) initialize from the checkpoint

* State transfer and reliable multicast

00“

Y, | .

= After re-ordering, it looks like each multicast is reliably
delivered in the same view at each receiver

= Note: if sender and all receivers fails, unstable message
can be “erased” even after delivery to an application
= This is a price we pay to gain higher speed




. What about ordering?

= It is trivial to make our protocol FIFO wrt
other messages from same sender
= If we just number messages from each sender,
they will “stay” in order
= Concurrent messages are unordered

= If sent by different senders, messages can be
delivered in different orders at different receivers

= This is the protocol called “fbcast”

:.| Preview of coming attractions

= Next time we'll add richer ordering
properties

= Group communication platforms often
offer a range
= Idea is that developer will pick the

cheapest solution that meets needs of a
given use




