
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Recap… Consistent cuts

n On Monday we saw that simply
gathering the state of a system isn’t
enough

n Often the “state” includes tricky
relationships

n Consistent cuts are a way of collecting
state that “could” have arisen
concurrently in real-time

What time is it?

n In distributed system we need practical
ways to deal with time
n E.g. we may need to agree that update A

occurred before update B
n Or offer a “lease” on a resource that

expires at time 10:10.0150
n Or guarantee that a time critical event will

reach all interested parties within 100ms

But what does time “mean”?

n Time on a global clock?
n E.g. with GPS receiver

n … or on a machine’s local clock
n But was it set accurately?
n And could it drift, e.g. run fast or slow?
n What about faults, like stuck bits?

n … or could try to agree on time

Lamport’s approach

n Leslie Lamport suggested that we
should reduce time to its basics
n Time lets a system ask “Which came first:

event A or event B?”
n In effect: time is a means of labeling

events so that…
n If A happened before B, TIME(A) < TIME(B)
n If TIME(A) < TIME(B), A happened before B

Drawing time-line pictures:

p

m

sndp(m)

q
rcvq(m) delivq(m)

D

2

Drawing time-line pictures:

n A, B, C and D are “events”.
n Could be anything meaningful to the application
n So are snd(m) and rcv(m) and deliv(m)

n What ordering claims are meaningful?

p

m

A

C

B

sndp(m)

q
rcvq(m) delivq(m)

D

Drawing time-line pictures:

n A happens before B, and C before D
n “Local ordering” at a single process

n Write and

p

q

m

A

C

B

rcvq(m) delivq(m)

sndp(m)

BA
p

→ DC
q

→

D

Drawing time-line pictures:

n sndp(m) also happens before rcvq(m)
n “Distributed ordering” introduced by a message

n Write

p

q

m

A

C

B

rcvq(m) delivq(m)

sndp(m)

)m(rcv)m(snd q

M

p →

D

Drawing time-line pictures:

n A happens before D
n Transitivity: A happens before sndp(m), which

happens before rcv q(m), which happens before D

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

Drawing time-line pictures:

n B and D are concurrent
n Looks like B happens first, but D has no

way to know. No information flowed…

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

Happens before “relation”

n We’ll say that “A happens before B”,
written A→B, if

1. A →PB according to the local ordering, or

2. A is a snd and B is a rcv and A →MB, or
3. A and B are related under the transitive

closure of rules (1) and (2)

n So far, this is just a mathematical
notation, not a “systems tool”

3

Logical clocks

n A simple tool that can capture parts of
the happens before relation

n First version: uses just a single integer
n Designed for big (64-bit or more) counters
n Each process p maintains LTp, a local

counter
n A message m will carry LTm

Rules for managing logical clocks

n When an event happens at a process p it
increments LTp.
n Any event that matters to p

n Normally, also snd and rcv events (since we want
receive to occur “after” the matching send)

n When p sends m, set
n LTm = LTp

n When q receives m, set
n LTq = max(LT q, LTm)+1

Time-line with LT annotations

n LT(A) = 1, LT(sndp(m)) = 2, LT(m) = 2
n LT(rcv q(m))=max(1,2)+1=3, etc…

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

5543331111000LTq

3333222222110LTp

Logical clocks

n If A happens before B, A→B,
then LT(A)<LT(B)

n But converse might not be true:
n If LT(A)<LT(B) can’t be sure that A→B
n This is because processes that don’t

communicate still assign timestamps and
hence events will “seem” to have an order

Can we do better?

n One option is to use vector clocks
n Here we treat timestamps as a list

n One counter for each process

n Rules for managing vector times differ
from what did with logical clocks

Vector clocks

n Clock is a vector: e.g. VT(A)=[1, 0]
n We’ll just assign p index 0 and q index 1
n Vector clocks require either agreement on the

numbering, or that the actual process id’s be
included with the vector

n Rules for managing vector clock
n When event happens at p, increment V Tp[indexp]

n Normally, also increment for snd and rcv events
n When sending a message, set VT(m)=VTp

n When receiving, set VTq=max(VTq, VT(m))

4

Time-line with VT annotations

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

2
4

2
3

2
3

2
2

2
2

2
2

0
1

0
1

0
1

0
1

0
0

0
0

0
0

VTq

3
0

3
0

3
0

3
0

2
0

2
0

2
0

2
0

2
0

2
0

1
0

1
0

0
0

VTp

VT(m)=[2,0]

Could also be [1,0] if we decide not to increment the clock on a
snd event. Decision depends on how the timestamps will be used.

Rules for comparison of VTs

n We’ll say that VTA = VTB if
n ∀I, V TA[i] = V TB[i]

n And we’ll say that VTA < VTB if
n VTA = VTB but VTA ? VT B

n That is, for some i, V TA[i] < VTB[i]

n Examples?
n [2,4] = [2,4]
n [1,3] < [7,3]
n [1,3] is “incomparable” to [3,1]

Time-line with VT annotations

n VT(A)=[1,0]. VT(D)=[2,4]. So VT(A)<VT(D)
n VT(B)=[3,0]. So VT(B) and VT(D) are incomparable

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

2
4

2
3

2
3

2
2

2
2

2
2

0
1

0
1

0
1

0
1

0
0

0
0

0
0

VTq

3
0

3
0

3
0

3
0

2
0

2
0

2
0

2
0

2
0

2
0

1
0

1
0

0
0

VTp

VT(m)=[2,0
]

Vector time and happens before

n If A→B, then VT(A)<VT(B)
n Write a chain of events from A to B

n Step by step the vector clocks get larger

n If VT(A)<VT(B) then A→B
n Two cases: if A and B both happen at same

process p, trivial

n If A happens at p and B at q, can trace the path
back by which q “learned” V TA[p]

n Otherwise A and B happened concurrently

Consistent cuts

n If we had time, we could revisit these
using logical and vector clocks

n In fact there are algorithms that find a
consistent cut by
n Implementing some form of clock
n Asking everyone to record their state at

time now+δ (for some large δ)

n And this can be made to work well…

Replication

n Another use of time arises when we talk
about replicating data in distributed systems

n The reason is that:
n We replicate data by multicasting updates over a

set of replicas

n They need to apply these updates in the same
order

n And order is a temporal notion

5

… and replication is powerful!

n Replicate data or a service for high availability
n Replicate data so that group members can

share loads and improve scalability
n Replicate locking or synchronization state
n Replicate membership information in a data

center so that we can route requests
n Replicate management information or

parameters to tune performance

Let’s look at time vis-à-vis updates

n Maybe logical notions of time can help
us understand when one update comes
before another update

n Then we can think about building
replicated update algorithms that are
optimized to run as fast as possible
while preserving the needed ordering

Drill down: Life of a group

p
q
r
s
t

Q does an update. It needs to
reach the three members

u0

u1

Initial group
membership is {r, s, t}Now s goes offline for a while. Maybe it crashed

Here, two pdates occur concurrently: r sees u0
followed by u1, but t sees u1 first, then u0. Process
s is still offline; it sees neither. This illustrates two

issues: update order and group membership

If p tries to “reliably” multicast to s, it
won’t get an ack and will wait indefinitely.
But how can p be sure that s has failed? If

p is wrong, s will be missing an update!

Now s is back online and
presumably should receive the

update q is sending.

Here we see the update ordering issue again
in a “pure” form. Which came first, p’s

update or the one from q?

Questions to ask about order

n Who should receive an update?
n What update ordering to use?
n How expensive is the ordering

property?

Questions to ask about order

n Delivery order for concurrent updates
n Issue is more subtle than it looks!
n We can fix a system-wide order, but…

n Sometimes nobody notices out of order delivery
n System-wide ordering is expensive

n If we care about speed we may need to look
closely at cost of ordering

Ordering example

n System replicates variables x, y
n Process p sends “x = x/2”
n Process q sends “x = 83”
n Process r sends “y = 17”
n Process s sends “z = x/y”

n To what degree is ordering needed?

6

Ordering example

n x=x/2 x=83
n These clearly “conflict”

n If we execute x=x/2 first, then x=83, x will
have value 83.

n In opposite order, x is left equal to 41.5

Ordering example

n x=x/2 y=17
n These don’t seem to conflict

n After the fact, nobody can tell what order
they were performed in

Ordering example

n z=x/y
n This conflicts with updates to x, updates

to y and with other updates to z

Commutativity

n We say that operations “commute” if
the final effect on some system is the
same even if the order of those
operations is swapped

n In general, a system worried about
ordering concurrent events need not
worry if the events commute

Single updater

n In many systems, there is only one process
that can update a given type of data
n For example, the variable might be “sensor

values” for a temperature sensor
n Only the process monitoring the sensor does

updates, although perhaps many processes want
to read the data and we replicate it to exploit
parallelism

n Here the only “ordering” that matters is the FIFO
ordering of the updates emitted by that process

Single updater

n If p is the only update source, the need
is a bit like the TCP “fifo” ordering

p

r
s
t

7

Mutual exclusion

n Another important case we’ll study
closely

n Arises in systems that use locks to
control access to shared data
n This is very common, for example in

“transactional” systems (we’ll discuss them
next week)

n Very often without locks, a system rapidly
becomes corrupted

Mutual exclusion

n Suppose that before performing
conflicting operations, processes must
lock the variables

n This means that there will never be any
true concurrency

n And it simplifies our ordering
requirement

Mutual exclusion

n Dark blue when holding the lock

n How is this case similar to “FIFO” with
one sender? How does it differ?

p
q
r
s
t

Mutual exclusion

n Are these updates in “FIFO” order?
n No, the sender isn’t always the same
n But yes in the sense that there is a unique

path through the system (corresponding to
the lock) and the updates are ordered
along that path

n Here updates are ordered by Lamport’s
happened before relation: →

Types of ordering we’ve seen

n Deliver updates in an order matching the
FIFO order in which they were sent

n Deliver updates in an order matching the →
order in which they were sent

n For conflicting concurrent updates, pick an
order and use that order at all replicas

n Deliver an update to all members of a group
according to “membership view” determined
by ordering updates wrt view changes

cheapest

More
costly

Most
costly

Still
cheap

Types of ordering we’ve seen

n Deliver updates in an order matching the
FIFO order in which they were sent

n Deliver updates in an order matching the →
order in which they were sent

n For conflicting concurrent updates, pick an
order and use that order at all replicas

n Deliver an update to all members of a group
according to “membership view” determined
by ordering updates wrt view changes

fbcast

abcast

gbcast

cbcast

8

Recommended readings

n In the textbook, we’re at the beginning
of Part III (Chapter 14)

n We’ll build up the “virtual synchrony”
replication model in the next lecture
and see how it can be built with 2PC,
3PC, consistent cuts and ordering

