
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Applications of these ideas

n Over the past three weeks we’ve heard about
n Gossip protocols
n Distributed monitoring, search, event notification
n Agreement protocols, such as 2PC and 3PC

n Underlying theme: some things need stronger
forms of consistency, some can manage with
weaker properties

n Today, let’s look at an application that could
run over several of these options, but where
the consistency issue is especially “clear”

Let’s start with 2PC and transactions

n The problem:
n Some applications perform operations on

multiple databases
n We would like a guarantee that either all

the databases get updated, or none does

n The relevant paradigm? 2PC

Problem: Pictorial version

n Goal? Either p succeeds, and both lists get
updated, or something fails and neither does

p

Employees
database

Coffee
fund

Create new
employee

Add to 3rd-floor
coffee fund

Issues?

n P could crash part way through…
n … a database could throw an exception,

e.g. “invalid SSN” or “duplicate record”
n … a database could crash, then restart,

and may have “forgotten” uncommitted
updates (presumed abort)

2PC is a good match!

n Adopt the view that each database
votes on its willingness to commit
n Until the commit actually occurs, update is

considered temporary
n In fact, database is permitted to discard a

pending update (covers crash/restart case)

n 2PC covers all of these cases

2

Solution

n P runs the transactions, but warns
databases that these are part of a
transaction on multiple databases
n They need to retain locks & logs

n When finished, run a 2PC protocol
n Until they vote “ok” a database can abort

n 2PC decides outcome and informs them

Low availability?

n One concern: we know that 2PC blocks
n It can happen if two processes fail
n It would need to happen at a particular stage of

execution and be the “right” two… but this
scenario isn’t all that rare

n Options?
n Could use 3PC to reduce (not eliminate!) this risk,

but will pay a cost on every transaction
n Or just accept the risk
n Can eliminate the risk with special hardware but

may pay a fortune!

Drilling down

n Why would 3PC reduce but not
eliminate the problem?
n It adds extra baggage and complexity
n And the result is that if we had a perfect

failure detector, the bad scenario is gone
n … but we only have timeouts
n … so there is still a bad scenario! It just turns

out to be less likely, if we estimate risks

n So: risk of getting stuck is “slashed”

Drilling down

n Why not just put up with this risk?
n Even the 3PC solution can still sometimes get

stuck

n Maybe the “I’m stuck” scenario should be viewed
as basic property of this kind of database
replication!

n This approach leads towards “wizards” that
sense the problem and then help DB admin-
istrator relaunch database if it does get stuck

Drilling down

n What about special hardware?
n Usually, we would focus on dual ported disks that

have a special kind of switching feature

n Only one node “owns” a disk at a time. If a node
fails, some other node will “take over” its disk

n Now we can directly access the state of a
failed node, hence can make progress in that
mystery scenario that worried us

n But this can add costs to the hardware

Connection to consistency

n We’re trying to ensure a form of “all or
nothing” consistency using 2PC

n Idea for our database is to either do the
transaction on all servers, or on none

n But this concept can be generalized

3

Auditing

n Suppose we want to “audit” a system
n Involves producing a summary of the state

n Should look as if system was idle

n Some options (so far)…
n Gossip to aggregate the system state
n Use RPC to ask everyone to report their state.

n With 2PC, first freeze the whole system (phase 1),
then snapshot the state.

Auditing

$875,221,117.17$1,241,761,251.23

LiabilitiesAssets

Uses for auditing

n In a bank, may be the only practical way to
understand “institutional risk”
n Need to capture state at some instant in time. If

branches report status at closing time, a bank that
operates world-wide gets inconsistent answers!

n In a security-conscious system, might audit to
try and identify source of a leak

n In a hospital, want ability to find out which
people examined which records

n In an airline, might want to know about
maintenance needs, spare parts inventory

Other kinds of auditing

n In a complex system that uses locking
might want to audit to see if a deadlock
has arisen

n In a system that maintains distributed
objects we could “audit” to see if
objects are referenced by anyone, and
garbage collect those that aren’t

Challenges

n In a complex system, such as a big
distributed web services system, we
won’t “know” all the components
n The guy starting the algorithm knows it

uses servers X and Y
n But server X talks to subsystem A, and Y

talks to B and C…

n Algorithms need to “chase links”

Implications?

n Our gossip algorithms might be ok for
this scenario: they have a natural ability
to chase links

n A simple RPC scheme (“tell me your
state”) becomes a nested RPC

4

Nested RPC

X

Y

Z

A

B

Temporal distortions

n Things can be complicated because we
can’t predict
n Message delays (they vary constantly)
n Execution speeds (often a process shares a

machine with many other tasks)
n Timing of external events

n Lamport looked at this question too

Temporal distortions

n What does “now” mean?
p0

a

f

e

p3

b

p2

p1
c

d

Temporal distortions

n What does “now” mean?
p0

a

f

e

p3

b

p2

p1
c

d

Temporal distortions

n Timelines can “stretch”…

n … caused by scheduling effects,
message delays, message loss…

p0
a

f

e

p3

b

p2

p1
c

d

Temporal distortions

n Timelines can “shrink”

n E.g. something lets a machine speed up

p0
a

f

e

p3

b

p2

p1
c

d

5

Temporal distortions

n Cuts represent instants of time.

n But not every “cut” makes sense
n Black cuts could occur but not gray ones.

p0
a

f

e

p3

b

p2

p1
c

d

Consistent cuts and snapshots

n Idea is to identify system states that
“might” have occurred in real-life
n Need to avoid capturing states in which a

message is received but nobody is shown
as having sent it

n This the problem with the gray cuts

Temporal distortions

n Red messages cross gray cuts “backwards”

p0
a

f

e

p3

b

p2

p1
c

d

Temporal distortions

n Red messages cross gray cuts “backwards”

n In a nutshell: the cut includes a
message that “was never sent”

p0
a

e

p3

b

p2

p1
c

Who cares?

n In our auditing example, we might think
some of the bank’s money is missing

n Or suppose that we want to do
distributed deadlock detection
n System lets processes “wait” for actions by

other processes
n A process can only do one thing at a time
n A deadlock occurs if there is a circular wait

Deadlock detection “algorithm”

n p worries: perhaps we have a deadlock
n p is waiting for q, so sends “what’s your

state?”
n q, on receipt, is waiting for r, so sends

the same question… and r for s…. And s
is waiting on p.

6

Suppose we detect this state

n We see a cycle…

n … but is it a deadlock?

p q

s r

Waiting for

Waiting for

Waiting for Waiting for

Phantom deadlocks!

n Suppose system has a very high rate of
locking.

n Then perhaps a lock release message
“passed” a query message
n i.e. we see “q waiting for r” and “r waiting for s”

but in fact, by the time we checked r, q was no
longer waiting!

n In effect: we checked for deadlock on a gray
cut – an inconsistent cut.

One solution is to “freeze” the
system

X

Y

Z

A

B

STOP!

One solution is to “freeze” the
system

X

Y

Z

A

B

STOP!

Ok…

Yes sir!

I’ll be late!

Was I speeding?

Sigh…

One solution is to “freeze” the
system

X

Y

Z

A

B

Sorry to trouble you, folks. I
just need a status snapshot,

please

One solution is to “freeze” the
system

X

Y

Z

A

B

No problem

Hey, doesn’t a guy have a
right to privacy?

Done…

Here you go…

Sigh…

7

One solution is to “freeze” the
system

X

Y

Z

A

B

Ok, you can go now

Why does it work?

n When we check bank accounts, or
check for deadlock, the system is idle

n So if “P is waiting for Q” and “Q is
waiting for R” we really mean
“simultaneously”

n But to get this guarantee we did
something very costly because no new
work is being done!

Consistent cuts and snapshots

n Goal is to draw a line across the system
state such that
n Every message “received” by a process is

shown as having been sent by some other
process

n Some pending messages might still be in
communication channels

n And we want to do this while running

Turn idea into an algorithm

n To start a new snapshot, pi …

n Builds a message: “Pi is initiating snapshot
k”.
n The tuple (pi, k) uniquely identifies the

snapshot

n Writes down its own state
n Starts recording incoming messages on all

channels

Turn idea into an algorithm

n Now pi tells its neighbors to start a snapshot
n In general, on first learning about snapshot (pi, k), px

n Writes down its state: px’s contribution to the snapshot
n Starts “tape recorders” for all communication channels
n Forwards the message on all outgoing channels
n Stops “tape recorder” for a channel when a snapshot

message for (pi, k) is received on it
n Snapshot consists of all the local state contributions

and all the tape-recordings for the channels

Chandy/Lamport

n Outgoing wave of requests… incoming
wave of snapshots and channel state

n Snapshot ends up accumulating at the
initiator, pi

n Algorithm doesn’t tolerate process
failures or message failures.

8

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

I want to start
a snapshot

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

p records local state

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

p starts monitoring
incoming channels

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

“contents of channel p-
y”

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

p floods message on
outgoing channels…

9

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q is done

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

zs

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

v

z

x

u

s

10

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

v

w

z

x

u

s

y

r

Chandy/Lamport

p
q

r

s

t

u

v

w

x
y

z

A snapshot of a network

q

x

u

s

v

r

t

w

p

y

z

Done!

Practical implication

n Snapshot won’t occur at a point in real time
n Could be noticeable to certain kinds of auditors
n In some situations only a truly instantaneous audit

can be accepted, but this isn’t common

n What belongs in the snapshot?
n Local states… namely “status of X when you

asked”
n Messages in transit… e.g. of we’re transferring

$1M from X to Y (otherwise that money would be
missing)

Recap and summary

n We’ve begun to develop powerful,
general tools
n They aren’t always of a form that the

platform can (or should) standardize
n But we can understand them as templates

that can be specialized to our needs
n Thinking this way lets us see that many

practical questions are just instances of the
templates we’ve touched on in the course

What next?

n We’ll resume the development of
primitives for replicating data
n First, notion of group membership

n Turns out to have a very strong connection to
our snapshot algorithm!

n Then fault-tolerant multicast
n Then ordered multicast delivery
n Finally leads to virtual synchrony “model”

n Then tackle more practical problems

