CS514: Intermediate Course
* in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

. RECAP: Agreement Protocols

= These are used when a set of processes
needs to make a decision of some sort
= The problem arises often and can take
many forms
= An agreement protocol solves a simple
(single-bit) instance of the general problem
= Gives us a “template” for building fancier
protocols that solve other problems

3 When is agreement needed?

= Recall Sam and Jill from lecture 5

= Sam was hoping he and Jill could eat
outside but they couldn’t get their act
together and ended up eating inside

= Itillustrated a type of impossibility result:
= Impossible to learn new “common knowledge”
facts in an asynchronous distributed system
» Defn: “I know that you know that I know...”
without any finite limit on the chain

FLP was about agreement

= There we focused on agreement on the
value of a single bit
= We concluded that
= One can build decision protocols
= And prove that they decide correctly
= And can even include failure handling
= But they can't guarantee progress

« If if we have many processes and know that at
most one of them might crash

We don't always need the FLP

3 “version” of agreement

= Sam and Jill needed an impossible-to-achieve
form of agreement!
= Had they sought a weaker guarantee they might
have been able to eat outside without risk!

» For example: suppose Sam sends “Let’s eat outside” and
Jill replies “Sounds good,” and Sam replies “See yah!”
= 3-way handshake has risk built in (if the last message

doesn't get through, what to do?) but the risk isn't large.

» If they can live with that risk... it solves the problem
= FLP is about impossible “progress” properties

. When is agreement needed?

= Situations where agreement arises

= Ordering updates to a replicated data item

= Might allow concurrent updates from sources
that don't coordinate their actions

= Or could have updates that are ordered by,
say, use of locking but that might then get
disordered in transmission through the network
= Decision on which updates “occurred”
= An issue in systems that experience faults

5 More needs for agreement

= Agreement on the membership

= Agreement on the leader, or some
other process with a special role

= Agreement on a ranking

= Agreement on loads or other inputs to a
load balancing service

= Agreement on the mapping of a name
to a target IP address, or on routing

One protocol isn’t enough!

= We'll need different solutions for these

different agreement problems

= But if we abstract away the detail can learn
basic things about how such protocols
should be structured

= Also can learn to prove correctness

= Then can build specific specialized ones,
optimized for a particular use and
engineered to perform well

5 Agreement: Paradigms

= We've already seen two examples
= FLP involved consensus on a single bit
= Processes have a bit values 0 or 1
= Protocol executes

» Outcome: all agree on a value (and it was a legitimate
input, and they tolerate faults, and we are faithful to the
decisions of the dead)

= Byzantine Agreement: same idea; different model
= But paradigms are about clean theory.
Engineering implies a focus on speed!

Things we know

= From FLP we know that this statement of the
problem...
= ... can be solved in asynchronous settings
= ... but solution can't guarantee liveness

= There is at least one input scenario and “event
sequence” that prevents progress

= From BA, we know that in a system with
synchronized rounds, solutions can be found,
but they are costly
= Anyhow, that synchronous model is impractical

What about real systems?

= Real world is neither synchronous nor

asynchronous

= We've got a good idea of messages latency

= ... and pretty good clocks

= Like Sam and Jill, we may be able to
tolerate undesired but unlikely outcomes

= Anyhow, no real system can achieve
perfect correctness (at best we depend on
the compiler, the operating system)

5 Real world goals?

= Practical solutions that:
= Work if most of the system is working

= Tolerate crashes and perhaps even some
mild forms of “Byzantine” behavior, like
accidental data corruption

= "Strive to be live” (to make progress) but
accept that some crash/partitioning
scenarios could prevent this, like it or not

= We still want to be rigorous

5 Performance goals

= Want solutions that are cheap, but what
should this mean?
= Traditionally: low total number of messages sent
(today, only rarely an important metric)
= Have low costs in per-process messages sent,
received (often important)

= Have low delay from when update was generated
to when it was applied (always VERY important)

5 Other goals

= Now we'll begin to work our way up to
really good solutions. These:
= Are efficient in senses just outlined
= Are packaged so that they can be used to
solve real problems

= Are well structured, so that we can
understand the code and (hopefully)
debug/maintain it easily

5 Roadmap

= To do this

= First look at 2-phase and 3-phase commit

= This pattern of communication arises in many protocols
and will be a basic building block

= Next look at “agreeing on membership”

= Protocols that track membership give fastest update
rates, often by orders of magnitude!

= Then, implement an ordered update (or multicast)
over these mechanisms

= Finally, think about software architecture issues

Roadmap

= This will give us
= A notion of a “process group”

= Has a name... and a set of members... and the
system can dynamically track membership

= Membership ranking is useful in applications
= Ways to do ordered, reliable, multicast
= Things built over these primitives: leader

election, replication, fault-tolerant request
execution, etc

Historical aside

= We're following the evolution of the area now
called “distributed systems”

= But we're focused on the path that gave the
highest performance solutions
= Also known as virtual synchrony systems

= Historically, many researchers focused on
quorum systems, a second path
= Much slower, although also has some benefits
= Closely related to “State Machine” replication

. . - A second line of research focused
H |St0r|ca| aSldG instead on notions of groups and
layered replication over that
abstraction. The protocols are
complex but rfor very II

First uses of replication wj
transactional databases
employed a protocol we'll g
today. But the solutiop
guarantee avaj z

date
€S and this is closely related
to consensus

ate machines
1970's: 2PC in static groups,
for database replication.
First uses of quorums

80's: Consensus

»

>
Modern quorum systems

3 Historical Aside

= Two major classes of real systems
= Virtual synchrony
« Weaker properties — not quite “FLP consensus”
= Much higher performance (orders of magnitude)
= Requires that majority of system remain connected.
Partitioning failures force protocols to wait for repair
= Quorum-based state machine protocols are
= Closer to FLP definition of consensus
« Slower (by orders of magnitude)

= Sometimes can make progress in partitioning situations
where virtual synchrony can’t

3 Names of some famous systems

= Isis was first practical virtual synchrony system
= Later followed by Transis, Totem, Horus
= Today: Best options are Jgroups, Spread, Ensemble
= Technology is now used in IBM Websphere and
Microsoft Windows Clusters products!
= Paxos was first major state machine system

= BASE and other Byzantine Quorum systems now
getting attention from the security community

= (End of Historical aside)

3 We're already on track “A”

= We're actually focused more on the
virtual synchrony “track”
= Not enough time to do justice to both

= And systems engineers tend to prefer very
high performance

= But for systems doing secure replication,

the Byzantine Quorums approach is
probably better despite costs

The commit problem

= An initiating process communicates with a group of
actors, who vote
= Initiator is often a group member, too
= Ideally, if all vote to commit we perform the action
= If any votes to abort, none does so
= Asynchronous model
= Network is reliable, but no notion of time
= Fail-stop processes
= In practice we introduce timeouts;

= If timeout occurs the leader can presume that a member
wants to abort. Called the presumed abort assumption.

3 As a time-line picture

Vote? Commit!
\ \

Initiator \
\
A
\
N N\

All vote “commit”

~h NQ%

5 Observations?

= Any member can abort any time it likes,
even before the protocol runs
= E.g. if we are talking “about” some
pending action that the group has known
for a while
= We call it "2 phase” even though it
actually has 3 rounds of messages

i As a time-line picture

Phase 1

2PC

Initiator

Phase 2

P

q

t
* Fault tolerance

= We can separate this into three cases
= Group member fails; initiator remains healthy
= Initiator fails; group members remain healthy
= Both initiator and group member fail
= Further separation
= Handling recovery of a failed member
= Recovery after “total” failure of the whole group

* In fact we're missing stuff

= Eventually will need to do some form of
garbage collection

= Issue is that participants need memory of
the protocol, at least for a while

= But can delay garbage collection and run it
later on behalf of many protocol instances
= Part of any real implementation but not
thought of as part of the protocol

i Fault tolerance

= Some cases are pretty easy

= E.g. if a member fails before voting we just
treat it as an abort

= If @ member fails after voting commit, we
assume that when it recovers it will finish

up the commit and perform whatever
action we requested

= Hard cases involve crash of initiator

i Initiator fails, members healthy

= Must ask “when did it fail”?

= Could fail before starting the 2PC protocol

« In this case if the members were expecting the protocol
to run, e.g. to terminate a pending transaction on a
database, they do “unilateral abort”

= Could fail after some are prepared to commit

= Those members need to learn the outcome before they
can “finish” the protocol

= Could fail after some have learned the outcome
= Others may still be in a prepared state

i Ideas?

= Members could do an all-to-all broadcast
= But this won't actually work... problem is that if a
process seems to have failed, perhaps some of us
will have seen its messages and some not
= Could elect a leader to solve the problem
= Forces us to inject leader election into our system
= Could use some sort of highly available log
server that remembers states of protocols
= This is how Web Services does it

i Leads to two ideas

= Initiator should record the decision in a
logging server for use after crashes
= We saw this in the Web Services transactional
systems slide set last week
= Also, members can help one-another
terminate the protocol
= E.g., a leader can take over if the initiator fails

= This is needed if a failure happens before the
initiator has a chance to log its decision

* As a time-line picture

Phase 1 Phase 2

2pC SHE

Initiator

~0 Q%

All vote “commit”

* Problems?

= 2PC has a “bad state”
= Suppose that the initiator and a member
both fail and we aren't using a “log”

= As 2PC is normally posed, we don't have a log
server in the problem statement

= (In practice, log server can eliminate this issue)

= There is a case in which we can't terminate
the protocol!

i Why do we get stuck?

= If process p voted “commit”, the coordinate
may have committed the protocol

= And p may have learned the outcome

= Perhaps it transferred $10M from a bank
account...

= So we want to be consistent with that

= If p voted “abort”, the protocol must abort
= And in this case we can't risk committing

* Why not always have a log?

= In some sense, a log service is just
another member

= In effect, Web Services is willing to wait if
its log server crashes and must reboot

= And guarantees that if this doesn’t happen
you never need to wait

= But in many systems we just want to use
2PC. Using a separate server is a pain

= Can we solve the problem without it?

i 3 phase commit

= Protocol was introduced by Skeen and
Stonebraker
= And it assumes detectable failures

= We happen to know that real systems can't detect
failures, unless they can unplug the power for a
faulty node

= But Skeen and Stonebraker set that to the side

= Idea is to add an extra “prepared to commit”
stage

* 3 phase commit

Phase 1 Phase 2 Phase 3
3pc Prepare to commit

Initiator

~Wh N QT

All vote “commit” All say “ok”

They commit

* Value of 3PC?

= Even with inaccurate failure detections, it
greatly reduces the window of vulnerability
= The bad case for 2PC is not so uncommon
= Especially if a group member is the initiator

= In that case one badly timed failure freezes the whole
group

= With 3PC in real systems, the troublesome case
becomes very unlikely

= But the risk of a freeze-up remains

* Why 3 phase commit?

= A “new leader” in the group can deduce the
outcomes when this protocol is used
= Main insight?
= Nobody can enter the commit state unless all are
first in the prepared state
= Makes it possible to determine the state, then
push the protocol forward (or back)
= But does require accurate failure detections
= If it didn't, would violate the FLP result!

........... / |Coord failed

Some additional details

= Like 2PC, 3PC needs some extra work

= Issue is that members need to save some

information about the protocol until it
terminates

= In practice this requires an extra round for
garbage collection

= Often we do this just now and then, on
behalf of many terminated protocols, so
costs are amortized and very low

What next?

= We'll use a protocol based on 2PC and
3PC (both are used) to build a group
membership service

= This is a system service that tracks
membership of process groups

= The service itself tries to be highly
available (but can't always do so)

= Other processes use it in place of a failure
detection system

!-‘ Layering

Tools for solving practical replication and availability problems:
we'll base them on ordered multicast

Ordered multicast: We'll base it on fault-tolerant multicast

Fault-tolerant multicast: We'll use membership ‘

Tracking group membership: We'll base 2PC and 3PC ‘

!-’ But first...

= We've seen several new mechanisms

» Let’s pause and ask if we can already
apply them in some practical real-world
settings

= Then resume and work our way up the
protocol stack!

!-‘ What should you be reading?

= We're working our way through Chapter
14 of the textbook now

= Read the introduction to Part III and
Chapters 13, 14 and 15

