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Fault tolerance

We’ve been skirting the issue of fault-
tolerant distributed computing

Fault-tolerance motivates us to use gossip 
protocols and similar mechanisms

Although scalability was also a motivation

But in general, what does it mean for a 
system to “tolerate” failures?

Today: focus on failure models

Failure models

Issues related to failures
How do systems “fail?” 
Given a category of failures, are there limits to 
what can we do about it?

Today explore this issue
Real world studies of failure rates
Experience with some big projects that failed
Formal models of failure (crash, fail-stop, 
Byzantine)
A famous (but confusing) impossibility result

Who needs failure “models”?

The problem is that processes can fail in so 
many ways

Hardware failures are rare, but they happen
Software bugs can cause a program to 
malfunction by crashing, corrupting data, or just 
failing to “do its job”
Intruders might inject some form of failure to 
disrupt or compromise a system
A failure detector could malfunction, signaling a 
failure even though nothing is wrong

Bohrbugs and Heisenbugs

A categorization due to Bruce Lindsey
Bohrbugs are dull, boring, debuggable bugs

They happen every time you run the program and are 
easy to localize and fix using modern development tools
If “purify” won’t find it… try binary search

Heisenbugs are hard to pin down
Often associated with threading or interrupts
Frequently a data structure is damaged but this is only 
noticed much later
Hence hard to reproduce and so hard to fix
In mature programs, Heisenbugs dominate

Clean-room development

Idea is that to write code
First, the team develops a good specification and 
refines it to modules
A primary coding group implements them
Then the whole group participates in code review
Then the primary group develops a 
comprehensive test suite and runs it
Finally passes off to a Q/A group that redoes 
these last stages (code review, testing)
Later, upgrades require same form of Q/A!
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Reality?

Depends very much on the language
With Java and C# we get strong type checking 
and powerful tools to detect many kinds of 
mistakes
Also clean abstraction boundaries

But with C++ and C and Fortran, we lack 
such tools
The methodology tends to require good tools

Why do systems fail?

Many studies of this issue suggest that
Incorrect specifications (e.g. the program 
just doesn’t “work” in the first place)
Lingering Heisenbugs, often papered-over
Administrative errors
Unintended side-effects of upgrades and 
bug fixes

… are dominant causes of failures.

What can we do about it?

Better programming languages, 
approaches and tools can help

For example shift from C to Java and C# 
has been hugely beneficial

But we should anticipate that large 
systems will exhibit problems
Failures are a side-effect of using 
technology to solve complex problems!

Who needs failure “models”?

Role of a failure model
Lets us reduce fault-tolerance to a 
mathematical question

In model M, can problem P be solved?
How costly is it to do so?
What are the best solutions?
What tradeoffs arise?

And clarifies what we are saying
Lacking a model, confusion is common

Categories of failures

Crash faults, message loss
These are common in real systems
Crash failures: process simply stops, and 
does nothing wrong that would be 
externally visible before it stops

These faults can’t be directly detected

Categories of failures

Fail-stop failures
These require system support
Idea is that the process fails by crashing, 
and the system notifies anyone who was 
talking to it
With fail-stop failures we can overcome 
message loss by just resending packets, 
which must be uniquely numbered
Easy to work with… but rarely supported
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Categories of failures

Non-malicious Byzantine failures
This is the best way to understand many 
kinds of corruption and buggy behaviors
Program can do pretty much anything, 
including sending corrupted messages
But it doesn’t do so with the intention of 
screwing up our protocols

Unfortunately, a pretty common mode 
of failure

Categories of failure

Malicious, true Byzantine, failures
Model is of an attacker who has studied the 
system and wants to break it
She can corrupt or replay messages, intercept 
them at will, compromise programs and substitute 
hacked versions

This is a worst-case scenario mindset
In practice, doesn’t actually happen
Very costly to defend against; typically used in 
very limited ways (e.g. key mgt. server)

Recall: Two kinds of models

We tend to work within two models
Asynchronous model makes no 
assumptions about time

Processes have no clocks, will wait indefinitely 
for messages, could run arbitrarily fast/slow
Distributed computing at an “eons” timescale

Synchronous model assumes a lock-step 
execution in which processes share a clock

Failures in the asynchronous model

Network is assumed to be reliable
But processes can fail

A failed process “crashes:” it stops doing anything
Notice that in this model, a failed process is 
indistinguishable from a delayed process
In fact, the decision that something has failed 
takes on an arbitrary flavor

Suppose that at point e in its execution, process p 
decides to treat q as faulty….”

What about the synchronous model?

Here, we also have processes and messages
But communication is usually assumed to be 
reliable: any message sent at time t is delivered 
by time t+δ
Algorithms are often structured into rounds, each 
lasting some fixed amount of time ∆, giving time 
for each process to communicate with every other 
process
In this model, a crash failure is easily detected

Neither model is realistic

Value of the asynchronous model is that it is 
so stripped down and simple

If we can do something “well” in this model we 
can do at least as well in the real world
So we’ll want “best” solutions

Value of the synchronous model is that it 
adds a lot of “unrealistic” mechanism

If we can’t solve a problem with all this help, we 
probably can’t solve it in a more realistic setting!
So seek impossibility results
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Examples of results

It is common to look at problems like 
agreeing on an ordering

Often reduced to “agreeing on a bit” (0/1)
To make this non-trivial, we assume that 
processes have an input and must pick 
some legitimate input value

Can we implement a fault-tolerant 
agreement protocol?

Connection to consistency

A system behaves consistently if users can’t 
distinguish it from a non-distributed system 
that supports the same functionality

Many notions of consistency reduce to agreement 
on the events that occurred and their order
Could imagine that our “bit” represents

Whether or not a particular event took place
Whether event A is the “next” event

Thus fault-tolerant consensus is deeply 
related to fault-tolerant consistency

Fischer, Lynch and Patterson

A surprising result
Impossibility of Asynchronous Distributed 
Consensus with a Single Faulty Process

They prove that no asynchronous algorithm 
for agreeing on a one-bit value can guarantee 
that it will terminate in the presence of crash 
faults

And this is true even if no crash actually occurs!
Proof constructs infinite non-terminating runs

Core of FLP result

They start by looking at a system with 
inputs that are all the same

All 0’s must decide 0, all 1’s decides 1

Now they explore mixtures of inputs 
and find some initial set of inputs with 
an uncertain (“bivalent”) outcome
They focus on this bivalent state

Bivalent state

System 
starts in S*

Events can 
take it to 
state S1

Events can 
take it to 
state S0

S* denotes bivalent state
S0 denotes a decision 0 state
S1 denotes a decision 1 state

Sooner or later all executions 
decide 0

Sooner or later all executions 
decide 1

Bivalent state

System 
starts in S*

Events can 
take it to 
state S1

Events can 
take it to 
state S0

e

e is a critical event that 
takes us from a bivalent 

to a univalent state: 
eventually we’ll “decide” 0
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Bivalent state

System 
starts in S*

Events can 
take it to 
state S1

Events can 
take it to 
state S0

They delay e and show 
that there is a situation in 

which the system will 
return to a bivalent state

S’
*

Bivalent state

System 
starts in S*

Events can 
take it to 
state S1

Events can 
take it to 
state S0

S’
*

In this new state they 
show that we can deliver 
e and that now, the new 
state will still be bivalent!

S’’
*

e

Bivalent state

System 
starts in S*

Events can 
take it to 
state S1

Events can 
take it to 
state S0

S’
*

Notice that we made the 
system do some work and 
yet it ended up back in an 
“uncertain” state.  We can 
do this again and again

S’’
*

e

Core of FLP result in words

In an initially bivalent state, they look at 
some execution that would lead to a 
decision state, say “0”

At some step this run switches from 
bivalent to univalent, when some process 
receives some message m
They now explore executions in which m is 
delayed

Core of FLP result
So:

Initially in a bivalent state
Delivery of m would make us univalent but we delay m
They show that if the protocol is fault-tolerant there must be 
a run that leads to the other univalent state
And they show that you can deliver m in this run without a 
decision being made

This proves the result: they show that a bivalent 
system can be forced to do some work and yet 
remain in a bivalent state.

If this is true once, it is true as often as we like
In effect: we can delay decisions indefinitely

But how did they “really” do it?

Our picture just gives the basic idea
Their proof actually proves that there is 
a way to force the execution to follow 
this tortured path
But the result is very theoretical…

… to much so for us in CS514

So we’ll skip the real details
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Intuition behind this result?

Think of a real system trying to agree on 
something in which process p plays a key role
But the system is fault-tolerant: if p crashes it 
adapts and moves on
Their proof “tricks” the system into treating p 
as if it had failed, but then lets p resume 
execution and “rejoin”
This takes time… and no real progress occurs

But what did “impossibility” mean?

In formal proofs, an algorithm is totally correct if
It computes the right thing
And it always terminates

When we say something is possible, we mean “there 
is a totally correct algorithm” solving the problem
FLP proves that any fault-tolerant algorithm solving 
consensus has runs that never terminate

These runs are extremely unlikely (“probability zero”)
Yet they imply that we can’t find a totally correct solution
And so “consensus is impossible” ( “not always possible”)

Recap
We have an asynchronous model with crash failures

A bit like the real world!
In this model we know how to do some things

Tracking “happens before” & making a consistent snapshot
Later we’ll find ways to do ordered multicast and implement 
replicated data and even solve consensus

But now we also know that there will always be 
scenarios in which our solutions can’t make progress

Often can engineer system to make them extremely unlikely
Impossibility doesn’t mean these solutions are wrong – only 
that they live within this limit  

Tougher failure models

We’ve focused on crash failures
In the synchronous model these look like a 
“farewell cruel world” message
Some call it the “failstop model”.  A faulty process 
is viewed as first saying goodbye, then crashing

What about tougher kinds of failures?
Corrupted messages
Processes that don’t follow the algorithm
Malicious processes out to cause havoc?

Here the situation is much harder

Generally we need at least 3f+1 
processes in a system to tolerate f 
Byzantine failures

For example, to tolerate 1 failure we need 
4 or more processes

We also need f+1 “rounds”
Let’s see why this happens

Byzantine scenario
Generals (N of them) surround a city

They communicate by courier
Each has an opinion: “attack” or “wait”

In fact, an attack would succeed: the city will fall.
Waiting will succeed too: the city will surrender.  
But if some attack and some wait, disaster ensues

Some Generals (f of them) are traitors… it 
doesn’t matter if they attack or wait, but we 
must prevent them from disrupting the battle

Traitor can’t forge messages from other Generals
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Byzantine scenario

Attack!

Wait…

Attack!

Attack! 
No, wait!  

Surrender!

Wait…

A timeline perspective

Suppose that p and q favor attack, r is 
a traitor and s and t favor waiting… 
assume that in a tie vote, we attack

p

q

r

s

t

A timeline perspective

After first round collected votes are:
{attack, attack, wait, wait, traitor’s-vote}

p

q

r

s

t

What can the traitor do?

Add a legitimate vote of “attack”
Anyone with 3 votes to attack knows the 
outcome

Add a legitimate vote of “wait”
Vote now favors “wait”

Or send different votes to different folks
Or don’t send a vote, at all, to some

Outcomes?
Traitor simply votes:

Either all see {a,a,a,w,w}
Or all see {a,a,w,w,w}

Traitor double-votes
Some see {a,a,a,w,w} and some {a,a,w,w,w}

Traitor withholds some vote(s)
Some see {a,a,w,w}, perhaps others see 
{a,a,a,w,w,} and still others see {a,a,w,w,w}

Notice that traitor can’t manipulate votes of 
loyal Generals!

What can we do?

Clearly we can’t decide yet; some loyal 
Generals might have contradictory data

In fact if anyone has 3 votes to attack, they can 
already “decide”.
Similarly, anyone with just 4 votes can decide
But with 3 votes to “wait” a General isn’t sure 
(one could be a traitor…)

So: in round 2, each sends out “witness” 
messages: here’s what I saw in round 1

General Smith send me: “attack(signed) Smith”
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Digital signatures

These require a cryptographic system
For example, RSA
Each player has a secret (private) key K-1

and a public key K.  
She can publish her public key

RSA gives us a single “encrypt” function:
Encrypt(Encrypt(M,K),K-1) = 
Encrypt(Encrypt(M,K-1),K) = M
Encrypt a hash of the message to “sign” it

With such a system
A can send a message to B that only A could 
have sent

A just encrypts the body with her private key
… or one that only B can read

A encrypts it with B’s public key
Or can sign it as proof she sent it

B can recompute the signature and decrypt A’s 
hashed signature to see if they match

These capabilities limit what our traitor can 
do: he can’t forge or modify a message

A timeline perspective

In second round if the traitor didn’t 
behave identically for all Generals, we 
can weed out his faulty votes

p

q

r

s

t

A timeline perspective

We attack!

p

q

r

s

t

Attack!!

Attack!!

Attack!!

Attack!!

Damn!  They’re on to me

Traitor is stymied

Our loyal generals can deduce that the 
decision was to attack
Traitor can’t disrupt this…

Either forced to vote legitimately, or is caught
But costs were steep!

(f+1)*n2 ,messages!
Rounds can also be slow….

“Early stopping” protocols: min(t+2, f+1) rounds; 
t is true number of faults

Recent work with Byzantine model

Focus is typically on using it to secure 
particularly sensitive, ultra-critical services

For example the “certification authority” that 
hands out keys in a domain
Or a database maintaining top-secret data

Researchers have suggested that for such 
purposes, a “Byzantine Quorum” approach 
can work well
They are implementing this in real systems by 
simulating rounds using various tricks
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Byzantine Quorums

Arrange servers into a √ n x √n array
Idea is that any row or column is a quorum
Then use Byzantine Agreement to access that 
quorum, doing a read or a write

Separately, Castro and Liskov have tackled a 
related problem, using BA to secure a file 
server

By keeping BA out of the critical path, can avoid 
most of the delay BA normally imposes

Split secrets
In fact BA algorithms are just the tip of a 
broader “coding theory” iceberg
One exciting idea is called a “split secret”

Idea is to spread a secret among n servers so that 
any k can reconstruct the secret, but no individual 
actually has all the bits
Protocol lets the client obtain the “shares” without 
the servers seeing one-another’s messages
The servers keep but can’t read the secret! 

Question: In what ways is this better than 
just encrypting a secret?

How split secrets work

They build on a famous result
With k+1 distinct points you can uniquely identify 
an order-k polynomial

i.e 2 points determine a line
3 points determine a unique quadratic

The polynomial is the “secret”
And the servers themselves have the points – the 
“shares”
With coding theory the shares are made just 
redundant enough to overcome n-k faults

Byzantine Broadcast (BB)

Many classical research results use 
Byzantine Agreement to implement a 
form of fault-tolerant multicast

To send a message I initiate “agreement” 
on that message
We end up agreeing on content and 
ordering w.r.t. other messages

Used as a primitive in many published 
papers

Pros and cons to BB

On the positive side, the primitive is very 
powerful

For example this is the core of the Castro and 
Liskov technique

But on the negative side, BB is slow
We’ll see ways of doing fault-tolerant multicast 
that run at 150,000 small messages per second
BB: more like 5 or 10 per second

The right choice for infrequent, very sensitive 
actions… but wrong if performance matters

Take-aways?
Fault-tolerance matters in many systems

But we need to agree on what a “fault” is
Extreme models lead to high costs!

Common to reduce fault-tolerance to some 
form of data or “state” replication

In this case fault-tolerance is often provided by 
some form of broadcast
Mechanism for detecting faults is also important in 
many systems.  

Timeout is common… but can behave inconsistently  
“View change” notification is used in some systems.  
They typically implement a fault agreement protocol.


