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Using Gossip to Build Scalable 
Services

Ken Birman, CS514
Dept. of Computer Science

Cornell University

Our goal today

n Bimodal Multicast (last week) offers unusually 
robust event notification.  It combines UDP 
multicast+ gossip for scalability

n What other things can we do with gossip?  
n Today:

n Building a “system status picture”

n Distributed search (Kelips )
n Scalable monitoring (Astrolabe)

Gossip 101

n Suppose that I know something
n I’m sitting next to Fred, and I tell him

n Now 2 of us “know”

n Later, he tells Mimi and I tell Anne
n Now 4

n This is an example of a push epidemic
n Push-pull occurs if we exchange data

Gossip scales very nicely

n Participants’ loads independent of size
n Network load linear in system size
n Information spreads in log(system size) 
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Gossip in distributed systems

n We can gossip about membership
n Need a bootstrap mechanism, but then 

discuss failures, new members

n Gossip to repair faults in replicated data
n “I have 6 updates from Charlie”

n If we aren’t in a hurry, gossip to 
replicate data too

Gossip about membership

n Start with a bootstrap protocol
n For example, processes go to some web site and it 

lists a dozen nodes where the system has been 
stable for a long time

n Pick one at random

n Then track “processes I’ve heard from 
recently” and “processes other people have 
heard from recently”

n Use push gossip to spread the word
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Gossip about membership

n Until messages get full, everyone will 
known when everyone else last sent a 
message
n With delay of log(N) gossip rounds…

n But messages will have bounded size
n Perhaps 8K bytes
n Now what?

Dealing with full messages

n One option: pick random data
n Randomly sample in the two sets
n Now, a typical message contains 1/k of the “live” 

information.  How does this impact the epidemic?

n Works for medium sizes, say 10,000 nodes…
n K side-by -side epidemics… each takes log(N) time
n Basically, we just slow things down by a factor of 

k…  If a gossip message talks about 250 
processes at a time, for example, and there are 
10,000 in total, 40x slowdown

Really big systems

n With a huge system, instead of a 
constant delay, the slowdown will be a 
factor more like O(N)

n For example:
n 1 million processes.  Can only gossip about 

250 at a time…
n … it will take 4000 “rounds” to talk about 

all of them even once!

Now would need hierarchy

n Perhaps the million nodes are in centers 
of size 50,000 each (for example)

n And the data centers are organized into 
five corridors each containing 10,000
n Then can use our 10,000 node solution on 

a per-corridor basis
n Higher level structure would just track 

“contact nodes” on a per center/per 
corridor basis.  

Generalizing

n We could generalize and not just track 
“last heard from” times
n Could also track, for example:

n IP address(es) and connectivity information
n System configuration (e.g. which services is it 

running)
n Does it have access to UDP multicast?
n How much free space is on its disk?

n Allows us to imagine an annotated map!

Google mashup

n Google introduced idea for the web
n You take some sort of background map, 

like a road map
n Then build a table that lists coordinates 

and stuff you can find at that spot
n Corner of College and Dryden, Ithaca: 

Starbucks…

n Browser shows pushpins with popups
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Our “map” as a mashup

n We could take a system topology 
picture
n And then superimpose “dots” to represent 

the machines
n And each machine could have an 

associated list of its properties

n It would be a live mashup!  Changes 
visible within log(N) time

Uses of such a mashup?

n Applications could use it to configure 
themselves
n For example, perhaps they want to use UDP 

multicast within subsystems that can access it, but 
build an overlay network for larger-scale 
communication where UDP multicast isn’t 
permitted

n Would need to read mashup, think, then spit 
out a configuration file “just for me”

Let’s look at a second example

n Astrolabe system uses gossip to build a 
whole distributed database

n Nodes are given an initial location –
each knows its “leaf domain”

n Inner nodes are elected using gossip 
and “aggregation” (we’ll explain this)

n Result is a self-defined tree of tables…

Astrolabe
Astrolabe
n Intended as help for 

applications adrift in 
a sea of information

n Structure emerges 
from a randomized 
gossip protocol

n This approach is 
robust and scalable 
even under stress 
that cripples 
traditional systems

Developed at RNS, 
Cornell

n By Robbert van 
Renesse, with many 
others helping…

n Today used 
extensively within 
Amazon.com

Astrolabe is a flexible monitoring 
overlay
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Astrolabe in a single domain

n Each node owns a single tuple, like the 
management information base (MIB)

n Nodes discover one-another through a 
simple broadcast scheme (“anyone out 
there?”) and gossip about membership
n Nodes also keep replicas of one-another’s 

rows
n Periodically (uniformly at random) merge 

your state with some else…
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State Merge: Core of Astrolabe epidemic

cardinal

falcon

swift

Name

2201

1976

2003

T ime

3.5

2.7

.67

Load

1

1

0

Weblogic
?

1

0

1

SMTP?

6.0

4.1

6.2

Word 
Version

0

0

1

SMTP?

6.014.52004cardinal

4.111.51971falcon

6.202.02011swift

Word 
Versi

on

Weblogic?LoadT imeName

swift.cs.cornell.edu

cardinal.cs.cornell.edu

State Merge: Core of Astrolabe epidemic
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Observations

n Merge protocol has constant cost
n One message sent, received (on avg) per 

unit time.
n The data changes slowly, so no need to 

run it quickly – we usually run it every five 
seconds or so

n Information spreads in O(log N) time
n But this assumes bounded region size

n In Astrolabe, we limit them to 50-100 rows

Big systems…

n A big system could have many regions
n Looks like a pile of spreadsheets
n A node only replicates data from its 

neighbors within its own region

Scaling up… and up…

n With a stack of domains, we don’t want 
every system to “see” every domain
n Cost would be huge

n So instead, we’ll see a summary
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Astrolabe builds a hierarchy using a P2P 
protocol that “assembles the puzzle” without 
any servers
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SQL query 
“summarizes”

data

Dynamically changing 
query output is visible 
system-wide
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Large scale: “fake” regions

n These are
n Computed by queries that summarize a 

whole region as a single row
n Gossiped in a read-only manner within a 

leaf region
n But who runs the gossip?

n Each region elects “k” members to run 
gossip at the next level up.

n Can play with selection criteria and “k”

Hierarchy is virtual… data is replicated
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Yellow leaf node “sees” its neighbors and 
the domains on the path to the root.  

Falcon runs level 2 epidemic 
because it has lowest load

Gnu runs level 2 epidemic 
because it has lowest load

Hierarchy is virtual… data is replicated
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Green node sees different leaf domain but 
has a consistent view of the inner domain  

Worst case load?

n A small number of nodes end up 
participating in O(logfanoutN) epidemics
n Here the fanout is something like 50
n In each epidemic, a message is sent and 

received roughly every 5 seconds

n We limit message size so even during 
periods of turbulence, no message can 
become huge.  

Who uses stuff like this?

n Amazon uses Astrolabe throughout their 
big data centers!
n For them, Astrolabe plays the role of the 

mashup we talked about earlier
n They can also use it to automate reaction 

to temporary overloads
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Example of overload handling

n Some service S is getting slow…
n Astrolabe triggers a “system wide warning”

n Everyone sees the picture
n “Oops, S is getting overloaded and slow!”
n So everyone tries to reduce their frequency 

of requests against service S

Another use of gossip: Finding 
stuff

n This is a problem you’ve probably run 
into for file downloads
n Napster, Gnutella, etc
n They find you a copy of your favorite Red 

Hot Chili Peppers songs
n Then download from that machine

n At MIT, the Chord group turned this 
into a hot research topic!

Chord (MIT group)

n The MacDonald’s of DHTs
n A data structure mapped to a network

n Ring of nodes (hashed id’s)
n Superimposed binary lookup trees
n Other cached “hints” for fast lookups

n Chord is not convergently consistent

How Chord works

n Each node is given a random ID
n By hashing its IP address in a standard way

n Nodes are formed into a ring ordered by ID
n Then each node looks up the node ½ across, 

¼ across, 1/8th across, etc
n We can do binary lookups to get from one 

node to another now!
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OK… so we can look for nodes

n Now, store information in Chord
n Each “record” consists of

n A keyword or index
n A value (normally small, like an IP address)

n E.g:
n (“Madonna:I’m not so innocent”, 128.74.53.1)

n We map the index using the hash 
function and save the tuple at the 
closest Chord node along the ring

Madonna “maps” to 249
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(“Madonna:…”, 128.54.37.1)
Maps to 249

Looking for Madonna

n Take the name we’re searching for 
(needs to be the exact name!)

n Map it to the internal id
n Lookup the closest node
n It sends back the tuple (and you cache 

its address for speedier access if this 
happens again!)

Some issues with Chord

n Failures and rejoins are common
n Called the “churn” problem and it leaves 

holes in the ring
n Chord has a self-repair mechanism that 

each node runs, independently, but it gets 
a bit complex

n Also need to replicate information to 
ensure that it won’t get lost in a crash

Chord can malfunction if the 
network partitions…
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… so, who cares?

n Chord lookups can fail… and it suffers 
from high overheads when nodes churn
n Loads surge just when things are already 

disrupted… quite often, because of loads
n And can’t predict how long Chord might 

remain disrupted once it gets that way

n Worst case scenario: Chord can become 
inconsistent and stay that way
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Can we do better?

n Kelips is a Cornell-developed 
“distributed hash table”, much like 
Chord

n But unlike Chord it heals itself after a 
partitioning failure

n It uses gossip to do this…

Kelips (Linga, Gupta, Birman)
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“cnn.com” maps to group 2.  
So 110 tells group 2 to “route ”
inquiries about cnn.com to it.
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How it works

n Kelips is entirely gossip based!
n Gossip about membership
n Gossip to replicate and repair data
n Gossip about “last heard from” time used 

to discard failed nodes

n Gossip “channel” uses fixed bandwidth
n … fixed rate, packets of limited size

How it works

n Heuristic: periodically ping contacts to check liveness, 
RTT… swap so-so ones for better ones.

Node 102

Gossip data stream

Hmm…Node 19 looks like 
a much better contact in 

affinity group 2

175

19

RT
T: 2

35m
s

RTT: 6 ms

Node 175 is a 
contact for Node 

102 in some 
affinity group

Replication makes it robust

n Kelips should work even during 
disruptive episodes
n After all, tuples are replicated to  √N nodes
n Query k nodes concurrently to overcome 

isolated crashes, also reduces risk that very 
recent data could be missed

n … we often overlook importance of 
showing that systems work while 
recovering from a disruption

Work in progress…

n Prakash Linga is extending Kelips to 
support multi-dimensional indexing, 
range queries, self-rebalancing 

n Kelips has limited incoming “info rate”
n Behavior when the limit is continuously 

exceeded is not well understood. 
n Will also study this phenomenon

Kelips isn’t alone

n Back at MIT, Barbara Liskov built a 
system she calls Epichord
n It uses a Chord-like structure
n But it also has a background gossip 

epidemic that heals disruptions caused by 
crashes and partitions

n Epichord is immune to the problem 
Chord can suffer

Connection to self-stabilization

n Self-stabilization theory
n Describe a system and a desired property

n Assume a failure in which code remains correct 
but node states are corrupted

n Proof obligations: property reestablished within 
bounded time

n Epidemic gossip: remedy for what ails Chord! 
n c.f. Epichord (Liskov)
n Kelips and Epichord are self-stabilizing!
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Beyond self-stabilization

n Tardos poses a related problem
n Consider behavior of the system while an endless 

sequence of disruptive events occurs

n System never reaches a quiescent state
n Under what conditions will it still behave correctly?

n Results of form “if disruptions satisfy ϕ then 
correctness property is continuously satisfied”

n Hypothesis: with convergent consistency we 
may be able to prove such things

Convergent consistency

n A term used for gossip algorithms that
n Need log(N) time to “mix” new events into 

an online system
n Reconverge to their desired state once this 

mixing has occurred

n They can be overwhelmingly robust 
because gossip can explore an 
exponential number of data routes!

Summary

n Gossip is a powerful concept!
n We’ve seen gossip used for tracking membership 

and other data (live mashups)

n Gossip for data mining and monitoring
n Gossip for search in big peer-to-peer nets

n Gossip used to “aggregate” system-wide 
properties such as load, health of services, etc.

n Coming next: Even MORE uses of gossip!


