Using Gossip to Build Scalable
Services

Ken Birman, CS514
Dept. of Computer Science
Cornell University

= Bimodal Multicast (last week) offers unusually
robust event notification. It combines UDP
multicast+ gossip for scalability

= What other things can we do with gossip?

= Today:
= Building a “system status picture”
= Distributed search (Kelips)
= Scalable monitoring (Astrolabe)

Suppose that | know something

= I'm sitting next to Fred, and | tell him
= Now 2 of us “know”

Later, he tells Mimi and | tell Anne

= Now 4

This is an example of a push epidemic
Push-pull occurs if we exchange data

= Participants’ loads independent of size
= Network load linear in system size

= Information spreads in log(system size)
time

-
o

% infected

o
S

Time ®

ﬂ' Gossip in distributed systems

= We can gossip about membership

= Need a bootstrap mechanism, but then
discuss failures, new members

= Gossip to repair faults in replicated data
= “I have 6 updates from Charlie”

= If we aren’t in a hurry, gossip to
replicate data too

= Start with a bootstrap protocol
= For example, processes go to some web site and it
lists a dozen nodes where the system has been
stable for a long time
= Pick one at random

= Then track “processes I've heard from
recently” and “processes other people have
heard from recently”

= Use push gossip to spread the word

ﬂ Gossip about membership

= Until messages get full, everyone will
known when everyone else last sent a
message
= With delay of log(N) gossip rounds...

= But messages will have bounded size
= Perhaps 8K bytes
= Now what?

= One option: pick random data
= Randomly sample in the two sets
= Now, a typical message contains 1/k of the “live”
information. How does this impact the epidemic?
= Works for medium sizes, say 10,000 nodes...
= K side-by-side epidemics... each takes log(N) time
= Basically, we just slow things down by a factor of
k... If a gossip message talks about 250

processes at a time, for example, and there are
10,000 in total, 40x slowdown

= With a huge system, instead of a
constant delay, the slowdown will be a
factor more like O(N)

= For example:

= 1 million processes. Can only gossip about
250 at a time...

= ... it will take 4000 “rounds” to talk about
all of them even once!

= Perhaps the million nodes are in centers
of size 50,000 each (for example)

= And the data centers are organized into
five corridors each containing 10,000

= Then can use our 10,000 node solution on
a per-corridor basis
= Higher level structure would just track

“contact nodes” on a per center/per
corridor basis.

= We could generalize and not just track
“last heard from” times
= Could also track, for example:
= |P address(es) and connectivity information

= System configuration (e.g. which services is it
running)

= Does it have access to UDP multicast?
= How much free space is on its disk?

= Allows us to imagine an annotated map!

= Google introduced idea for the web

= You take some sort of background map,
like a road map

= Then build a table that lists coordinates
and stuff you can find at that spot

= Corner of College and Dryden, Ithaca:
Starbucks...

= Browser shows pushpins with popups

= We could take a system topology
picture

= And then superimpose “dots” to represent
the machines

= And each machine could have an
associated list of its properties
= It would be a live mashup! Changes
visible within log(N) time

Uses of such a mashup?

= Applications could use it to configure
themselves
= For example, perhaps they want to use UDP
multicast within subsystems that can access it, but
build an overlay network for larger-scale
communication where UDP multicast isn't
permitted
= Would need to read mashup, think, then spit
out a configuration file “just for me”

s Let’s look at a second example

= Astrolabe system uses gossip to build a
whole distributed database

= Nodes are given an initial location —
each knows its “leaf domain”

= Inner nodes are elected using gossip
and “aggregation” (we'll explain this)
= Result is a self-defined tree of tables...

Astrolabe

Developed at RNS,

Intended as help for
applications adrift in
a sea of information
Structure emerges
from a randomized
gossip protocol
This approach is
robust and scalable
even under stress
that cripples
traditional systems

Astrolabe

Cornell

By Robbert van
Renesse, with man:
others helping... ¢
Today used
extensively within
Amazon.com

Astrolabe is a flexible monitoring
overlay

lm Name [Time [toad [wewose | swier [wera
L —r
T 2D

- To o B B

= o |t | 1 T [Fxy

cargnal | 2004 | a5 1 o o0

swift.cs.cornell.edu Periodically, pull data from monitored systems

]

facon_|_2076 21 3 o a1

cardinal.cs.cornell.edu

Astrolabe in a single domain

= Each node owns a single tuple, like the
management information base (MIB)

= Nodes discover one-another through a
simple broadcast scheme (“anyone out
there?”) and gossip about membership
= Nodes also keep replicas of one-another’s

rows

= Periodically (uniformly at random) merge
your state with some else...

ﬁ State Merge: Core of Astrolabe epidemic

|‘~ 20) 1 62
5 T T ey

g
T T —P [
===

o [T

&

swift.cs.cornell.edu

B2

cardinal.cs.cornell.edu

State Merge: Core of Astrolabe epidemic

o o 1 62
-~ 27 f o a1
:rj P 2201 35 T T 7 Jeeeer’

cardinal.cs.cornell.edu

[l

—

. o
e | 1076 |2 f
g PR i T

cardinal.cs.cornell.edu

Observations
= Merge protocol has constant cost

= One message sent, received (on avg) per
unit time.

= The data changes slowly, so no need to
run it quickly — we usually run it every five
seconds or so

= Information spreads in O(log N) time
= But this assumes bounded region size
= In Astrolabe, we limit them to 50-100 rows

= A big system could have many regions
= Looks like a pile of spreadsheets

= A node only replicates data from its
neighbors within its own region

Scaling up... and up...

= With a stack of domains, we don’t want
every system to “see” every domain
= Cost would be huge

= So instead, we’ll see a summary

; i g
- e

cardinal.cs.cornell.edu

Astrolabe builds a hierarchy using a P2P
protocol that “assembles the puzzle” without
any servers

Dynamically changing
query output is visible

system-wide S SQL query
/y [sr T2 Toswos T swsernr | “summarizes”
[Tor [ovesnio | wsn | data

Name | toaa | wevoww | swer | wora
ve

| 17 o T 52

Taieon | 21 T o a1
oana | 5 T o 50

San Francisco New Jersey

s{ Large scale: “fake” regions

= These are

= Computed by queries that summarize a
whole region as a single row

= Gossiped in a read-only manner within a
leaf region

= But who runs the gossip?

= Each region elects “k” members to run
gossip at the next level up.

= Can play with selection criteria and “k”

Yellow leaf node “sees” its neighbors and
the domains on the path to the root.

Falcon runs level 2 epidemic
because it has lowest load

New Jersey

[st T2o0 Timwas | mwain |

Name | Lona | Webioga

S| 20 o
oo | 15 T
| 4% T

San Francisco

Worst case load?

= A small number of nodes end up
participating in O(10g,,:N) epidemics
= Here the fanout is something like 50
= In each epidemic, a message is sent and

received roughly every 5 seconds

= We limit message size so even during
periods of turbulence, no message can
become huge.

Who uses stuff like this?

= Amazon uses Astrolabe throughout their
big data centers!
= For them, Astrolabe plays the role of the
mashup we talked about earlier
= They can also use it to automate reaction
to temporary overloads

ﬂ Example of overload handling

= Some service S is getting slow...

= Astrolabe triggers a “system wide warning”
= Everyone sees the picture

= “Oops, S is getting overloaded and slow!”

= SO everyone tries to reduce their frequency
of requests against service S

Another use of gossip: Finding
stuff

= This is a problem you've probably run
into for file downloads

= Napster, Gnutella, etc

= They find you a copy of your favorite Red
Hot Chili Peppers songs

= Then download from that machine

= At MIT, the Chord group turned this
into a hot research topic!

= The MacDonald’s of DHTs

= A data structure mapped to a network
= Ring of nodes (hashed id’s)
= Superimposed binary lookup trees
= Other cached “hints” for fast lookups

= Chord is not convergently consistent

= Each node is given a random ID
= By hashing its IP address in a standard way

= Nodes are formed into a ring ordered by ID

= Then each node looks up the node %2 across,
Y4 across, 1/8th across, etc

= We can do binary lookups to get from one
node to another now!

ﬂ' Chord picture

Uil pauded

OK..

= Now, store information in Chord
= Each “record” consists of
= A keyword or index
= A value (normally small, like an IP address)
= E.Q:
= (“Madonna:I’'m not so innocent”, 128.74.53.1)
= We map the index using the hash
function and save the tuple at the
closest Chord node along the ring

(“Madonna:
Maps to 249

”,128.54.37.1)

= Take the name we’re searching for
(needs to be the exact name!)

= Map it to the internal id
= Lookup the closest node

= It sends back the tuple (and you cache
its address for speedier access if this
happens again!)

= Failures and rejoins are common

= Called the “churn” problem and it leaves
holes in the ring

= Chord has a self-repair mechanism that
each node runs, independently, but it gets
a bit complex

= Also need to replicate information to
ensure that it won't get lost in a crash

Chord can malfunction if the

ﬂ' network partitions...

= Kelips is a Cornell-developed

“distributed hash table”, much like

Chord of “nodes’ %ﬂn . .
= But unlike Chord it heals itself after a 3) E

partitioning failure . .
= It uses gossip to do this... - " -

110 knows about
other members —

Kelips

Affinity Groups: Affi
peer membership thru Affinity group view peer membership tTT
Map nodes to consistent hash «Dent hash
affinity groups v v } id_|hoest | ¥ é v }
o 0 1 2 N1 30 | 234 | 9oms o 5 >
(=T 2 230 | 322 | 3oms .]
|] [}
- u per affinity . per affinity
= group [group
EY 0
»] []
Affinity group
pointers

“cnn.com” maps to group 2.
So 110 tells group 2 to “route”
inquiries about cnn.com to it.

202isa
“contact” for
110 in group,2

Affinity group view

Affinity group view
id | hoeat [nt

id tt

hbeat

30 | 234 | 9oms

30 | 234 | 9oms
0 1 -1
230 | 322 | 30ms 230 | 322 | 30ms
10 M =
N w -
Contacts 2 3 Contacts
o members members
group | contactNode n per affinity group | contactNode per affinity
[] group group
a
2 202 [] L} - 2 202
Resource Tuples
Contact Gossip protocol
licates data
pointers resource | _info rep
cheaply

\ \ cnn.com | 110

ﬁ How it works

= Kelips is entirely gossip based!
= Gossip about membership
= Gossip to replicate and repair data

= Gossip about “last heard from” time used
to discard failed nodes

= Gossip “channel” uses fixed bandwidth
= ... fixed rate, packets of limited size

Node 175 is a
contact for Node

HOW It WOFkS E Hmm... 102 in some
a much._affinity grou

2 LI
%ﬂ Gossip data stream

= Heuristic: periodically ping contacts to check liveness,
RTT... swap so-so ones for better ones.

= Kelips should work even during
disruptive episodes
= After all, tuples are replicated to CN nodes
= Query k nodes concurrently to overcome
isolated crashes, also reduces risk that very
recent data could be missed
= ... we often overlook importance of
showing that systems work while
recovering from a disruption

Work in progress...

= Prakash Linga is extending Kelips to
support multi-dimensional indexing,
range queries, self-rebalancing

= Kelips has limited incoming “info rate”

= Behavior when the limit is continuously
exceeded is not well understood.

= Will also study this phenomenon

= Back at MIT, Barbara Liskov built a
system she calls Epichord
= It uses a Chord-like structure
= But it also has a background gossip

epidemic that heals disruptions caused by
crashes and partitions

= Epichordis immune to the problem
Chord can suffer

Connection to self-stabilization
= Self-stabilization theory
= Describe a system and a desired property

= Assume a failure in which code remains correct
but node states are corrupted

= Proof obligations: property reestablished within
bounded time
= Epidemic gossip: remedy for what ails Chord!
= c.f. Epichord (Liskov)
= Kelips and Epichord are self-stabilizing!

ﬂ Beyond self-stabilization

= Tardos poses a related problem

= Consider behavior of the system while an endless
sequence of disruptive events occurs

= System never reaches a quiescent state

= Under what conditions will it still behave correctly?
= Results of form “if disruptions satisfyj then

correctness property is continuously satisfied”
= Hypothesis: with convergent consistency we

may be able to prove such things

Convergent consistency

= A term used for gossip algorithms that
= Need log(N) time to “mix” new events into
an online system
= Reconverge to their desired state once this
mixing has occurred
= They can be overwhelmingly robust
because gossip can explore an
exponential number of data routes!

= Gossip is a powerful concept!

We've seen gossip used for tracking membership
and other data (live mashups)

Gossip for data mining and monitoring

Gossip for search in big peer-to-peer nets
Gossip used to “aggregate” system-wide
properties such as load, health of services, etc.

= Coming next: Even MORE uses of gossip!

10

