
1

Using Gossip to Build Scalable
Services

Ken Birman, CS514
Dept. of Computer Science

Cornell University

Our goal today

n Bimodal Multicast (last week) offers unusually
robust event notification. It combines UDP
multicast+ gossip for scalability

n What other things can we do with gossip?
n Today:

n Building a “system status picture”

n Distributed search (Kelips)
n Scalable monitoring (Astrolabe)

Gossip 101

n Suppose that I know something
n I’m sitting next to Fred, and I tell him

n Now 2 of us “know”

n Later, he tells Mimi and I tell Anne
n Now 4

n This is an example of a push epidemic
n Push-pull occurs if we exchange data

Gossip scales very nicely

n Participants’ loads independent of size
n Network load linear in system size
n Information spreads in log(system size)

time
%

 in
fe

ct
ed

0.0

1.0

Time →

Gossip in distributed systems

n We can gossip about membership
n Need a bootstrap mechanism, but then

discuss failures, new members

n Gossip to repair faults in replicated data
n “I have 6 updates from Charlie”

n If we aren’t in a hurry, gossip to
replicate data too

Gossip about membership

n Start with a bootstrap protocol
n For example, processes go to some web site and it

lists a dozen nodes where the system has been
stable for a long time

n Pick one at random

n Then track “processes I’ve heard from
recently” and “processes other people have
heard from recently”

n Use push gossip to spread the word

2

Gossip about membership

n Until messages get full, everyone will
known when everyone else last sent a
message
n With delay of log(N) gossip rounds…

n But messages will have bounded size
n Perhaps 8K bytes
n Now what?

Dealing with full messages

n One option: pick random data
n Randomly sample in the two sets
n Now, a typical message contains 1/k of the “live”

information. How does this impact the epidemic?

n Works for medium sizes, say 10,000 nodes…
n K side-by -side epidemics… each takes log(N) time
n Basically, we just slow things down by a factor of

k… If a gossip message talks about 250
processes at a time, for example, and there are
10,000 in total, 40x slowdown

Really big systems

n With a huge system, instead of a
constant delay, the slowdown will be a
factor more like O(N)

n For example:
n 1 million processes. Can only gossip about

250 at a time…
n … it will take 4000 “rounds” to talk about

all of them even once!

Now would need hierarchy

n Perhaps the million nodes are in centers
of size 50,000 each (for example)

n And the data centers are organized into
five corridors each containing 10,000
n Then can use our 10,000 node solution on

a per-corridor basis
n Higher level structure would just track

“contact nodes” on a per center/per
corridor basis.

Generalizing

n We could generalize and not just track
“last heard from” times
n Could also track, for example:

n IP address(es) and connectivity information
n System configuration (e.g. which services is it

running)
n Does it have access to UDP multicast?
n How much free space is on its disk?

n Allows us to imagine an annotated map!

Google mashup

n Google introduced idea for the web
n You take some sort of background map,

like a road map
n Then build a table that lists coordinates

and stuff you can find at that spot
n Corner of College and Dryden, Ithaca:

Starbucks…

n Browser shows pushpins with popups

3

Our “map” as a mashup

n We could take a system topology
picture
n And then superimpose “dots” to represent

the machines
n And each machine could have an

associated list of its properties

n It would be a live mashup! Changes
visible within log(N) time

Uses of such a mashup?

n Applications could use it to configure
themselves
n For example, perhaps they want to use UDP

multicast within subsystems that can access it, but
build an overlay network for larger-scale
communication where UDP multicast isn’t
permitted

n Would need to read mashup, think, then spit
out a configuration file “just for me”

Let’s look at a second example

n Astrolabe system uses gossip to build a
whole distributed database

n Nodes are given an initial location –
each knows its “leaf domain”

n Inner nodes are elected using gossip
and “aggregation” (we’ll explain this)

n Result is a self-defined tree of tables…

Astrolabe
Astrolabe
n Intended as help for

applications adrift in
a sea of information

n Structure emerges
from a randomized
gossip protocol

n This approach is
robust and scalable
even under stress
that cripples
traditional systems

Developed at RNS,
Cornell

n By Robbert van
Renesse, with many
others helping…

n Today used
extensively within
Amazon.com

Astrolabe is a flexible monitoring
overlay

cardinal

falcon

swift

Name

2201

1976

2003

T ime

3.5

2.7

.67

Load

1

1

0

Weblogic
?

1

0

1

SMTP?

6.0

4.1

6.2

Word
Version

0

0

1

SMTP?

6.014.52004cardinal

4.111.51971falcon

6.202.02011swift

Word
Versi

on

Weblogic?LoadT imeName

swift.cs.cornell.edu

cardinal.cs.cornell.edu

Periodically, pull data from monitored systems

0

0

1

SMTP?

6.014.52004cardinal

4.111.51971falcon

6.201.82271swift

Word
Versi

on

Weblogic?LoadT imeName

cardinal

falcon

swift

Name

2231

1976

2003

T ime

1.7

2.7

.67

Load

1

1

0

Weblogic
?

1

0

1

SMTP?

6.0

4.1

6.2

Word
Version

Astrolabe in a single domain

n Each node owns a single tuple, like the
management information base (MIB)

n Nodes discover one-another through a
simple broadcast scheme (“anyone out
there?”) and gossip about membership
n Nodes also keep replicas of one-another’s

rows
n Periodically (uniformly at random) merge

your state with some else…

4

State Merge: Core of Astrolabe epidemic

cardinal

falcon

swift

Name

2201

1976

2003

T ime

3.5

2.7

.67

Load

1

1

0

Weblogic
?

1

0

1

SMTP?

6.0

4.1

6.2

Word
Version

0

0

1

SMTP?

6.014.52004cardinal

4.111.51971falcon

6.202.02011swift

Word
Versi

on

Weblogic?LoadT imeName

swift.cs.cornell.edu

cardinal.cs.cornell.edu

State Merge: Core of Astrolabe epidemic

cardinal

falcon

swift

Name

2201

1976

2003

T ime

3.5

2.7

.67

Load

1

1

0

Weblogic
?

1

0

1

SMTP?

6.0

4.1

6.2

Word
Version

0

0

1

SMTP?

6.014.52004cardinal

4.111.51971falcon

6.202.02011swift

Word
Versi

on

Weblogic?LoadT imeName

swift.cs.cornell.edu

cardinal.cs.cornell.edu

2.02011swift

cardinal 2201 3.5

State Merge: Core of Astrolabe epidemic

cardinal

falcon

swift

Name

2201

1976

2011

T ime

3.5

2.7

2.0

Load

1

1

0

Weblogic
?

1

0

1

SMTP?

6.0

4.1

6.2

Word
Version

0

0

1

SMTP?

6.013.52201cardinal

4.111.51971falcon

6.202.02011swift

Word
Versi

on

Weblogic?LoadT imeName

swift.cs.cornell.edu

cardinal.cs.cornell.edu

Observations

n Merge protocol has constant cost
n One message sent, received (on avg) per

unit time.
n The data changes slowly, so no need to

run it quickly – we usually run it every five
seconds or so

n Information spreads in O(log N) time
n But this assumes bounded region size

n In Astrolabe, we limit them to 50-100 rows

Big systems…

n A big system could have many regions
n Looks like a pile of spreadsheets
n A node only replicates data from its

neighbors within its own region

Scaling up… and up…

n With a stack of domains, we don’t want
every system to “see” every domain
n Cost would be huge

n So instead, we’ll see a summary

cardinal

falcon

swift

Name

2201

1976

2011

T ime

3.5

2.7

2.0

Load

1

1

0

Weblogic
?

1

0

1

SMTP?

6.0

4.1

6.2

Word
Version

cardinal.cs.cornell.edu

cardinal

falcon

swift

Name

2201

1976

2011

T ime

3.5

2.7

2.0

Load

1

1

0

Weblogic
?

1

0

1

SMTP?

6.0

4.1

6.2

Word
Version

cardinal

falcon

swift

Name

2201

1976

2011

T ime

3.5

2.7

2.0

Load

1

1

0

Weblogic
?

1

0

1

SMTP?

6.0

4.1

6.2

Word
Version

cardinal

falcon

swift

Name

2201

1976

2011

T ime

3.5

2.7

2.0

Load

1

1

0

Weblogic
?

1

0

1

SMTP?

6.0

4.1

6.2

Word
Version

cardinal

falcon

swift

Name

2201

1976

2011

T ime

3.5

2.7

2.0

Load

1

1

0

Weblogic
?

1

0

1

SMTP?

6.0

4.1

6.2

Word
Version

cardinal

falcon

swift

Name

2201

1976

2011

T ime

3.5

2.7

2.0

Load

1

1

0

Weblogic
?

1

0

1

SMTP?

6.0

4.1

6.2

Word
Version

cardinal

falcon

swift

Name

2201

1976

2011

T ime

3.5

2.7

2.0

Load

1

1

0

Weblogic
?

1

0

1

SMTP?

6.0

4.1

6.2

Word
Version

5

6.0

4.1

6.2

Word
Version

014.5cardinal

011.5falcon

102.0swift

…SMTP?Weblogic?LoadName

6.2

6.2

4.5

Word
Version

01.5gnu

103.2zebra

001.7gazelle

…SMTP?Weblogic?LoadName

14.66.71.1214.66.71.83.1Par is

127.16.77.11127.16.77.61.8NJ

123.45.61.17123.45.61.32.6SF

SMTP contactWL contactAvg
Load

Name

Astrolabe builds a hierarchy using a P2P
protocol that “assembles the puzzle” without
any servers

6.0

4.1

6.2

Word
Version

014.5cardinal

011.5falcon

102.0swift

…SMTP?Weblogic?LoadName

6.2

6.2

4.5

Word
Version

01.5gnu

103.2zebra

001.7gazelle

…SMTP?Weblogic?LoadName

14.66.71.1214.66.71.83.1Par is

127.16.77.11127.16.77.61.8NJ

123.45.61.17123.45.61.32.6SF

SMTP contactWL contactAvg
Load

Name

San Francisco New Jersey

SQL query
“summarizes”

data

Dynamically changing
query output is visible
system-wide

6.0

4.1

6.2

Word
Version

013.9cardinal

012.1falcon

101.7swift

…SMTP?Weblogic?LoadName

6.2

6.2

4.5

Word
Version

012.2gnu

100.9zebra

004.1gazelle

…SMTP?Weblogic?LoadName

14.66.71.1214.66.71.82.7Par is

127.16.77.11127.16.77.61.6NJ

123.45.61.17123.45.61.32.2SF

SMTP contactWL contactAvg
Load

Name

Large scale: “fake” regions

n These are
n Computed by queries that summarize a

whole region as a single row
n Gossiped in a read-only manner within a

leaf region
n But who runs the gossip?

n Each region elects “k” members to run
gossip at the next level up.

n Can play with selection criteria and “k”

Hierarchy is virtual… data is replicated

6.0

4.1

6.2

Word
Version

014.5cardinal

011.5falcon

102.0swift

…SMTP?Weblogic?LoadName

6.2

6.2

4.5

Word
Version

01.5gnu

103.2zebra

001.7gazelle

…SMTP?Weblogic?LoadName

14.66.71.1214.66.71.83.1Par is

127.16.77.11127.16.77.61.8NJ

123.45.61.17123.45.61.32.6SF

SMTP contactWL contactAvg
Load

Name

San Francisco New Jersey

Yellow leaf node “sees” its neighbors and
the domains on the path to the root.

Falcon runs level 2 epidemic
because it has lowest load

Gnu runs level 2 epidemic
because it has lowest load

Hierarchy is virtual… data is replicated

6.0

4.1

6.2

Word
Version

014.5cardinal

011.5falcon

102.0swift

…SMTP?Weblogic?LoadName

6.2

6.2

4.5

Word
Version

01.5gnu

103.2zebra

001.7gazelle

…SMTP?Weblogic?LoadName

14.66.71.1214.66.71.83.1Par is

127.16.77.11127.16.77.61.8NJ

123.45.61.17123.45.61.32.6SF

SMTP contactWL contactAvg
Load

Name

San Francisco New Jersey

Green node sees different leaf domain but
has a consistent view of the inner domain

Worst case load?

n A small number of nodes end up
participating in O(logfanoutN) epidemics
n Here the fanout is something like 50
n In each epidemic, a message is sent and

received roughly every 5 seconds

n We limit message size so even during
periods of turbulence, no message can
become huge.

Who uses stuff like this?

n Amazon uses Astrolabe throughout their
big data centers!
n For them, Astrolabe plays the role of the

mashup we talked about earlier
n They can also use it to automate reaction

to temporary overloads

6

Example of overload handling

n Some service S is getting slow…
n Astrolabe triggers a “system wide warning”

n Everyone sees the picture
n “Oops, S is getting overloaded and slow!”
n So everyone tries to reduce their frequency

of requests against service S

Another use of gossip: Finding
stuff

n This is a problem you’ve probably run
into for file downloads
n Napster, Gnutella, etc
n They find you a copy of your favorite Red

Hot Chili Peppers songs
n Then download from that machine

n At MIT, the Chord group turned this
into a hot research topic!

Chord (MIT group)

n The MacDonald’s of DHTs
n A data structure mapped to a network

n Ring of nodes (hashed id’s)
n Superimposed binary lookup trees
n Other cached “hints” for fast lookups

n Chord is not convergently consistent

How Chord works

n Each node is given a random ID
n By hashing its IP address in a standard way

n Nodes are formed into a ring ordered by ID
n Then each node looks up the node ½ across,

¼ across, 1/8th across, etc
n We can do binary lookups to get from one

node to another now!

Chord picture
0

123

199

202

241

255

248

108

177

64

30

C
ached link

Finger
links

Node 30 searches for 249
0

123

199

202

241

255

248

108

177

64

30

7

OK… so we can look for nodes

n Now, store information in Chord
n Each “record” consists of

n A keyword or index
n A value (normally small, like an IP address)

n E.g:
n (“Madonna:I’m not so innocent”, 128.74.53.1)

n We map the index using the hash
function and save the tuple at the
closest Chord node along the ring

Madonna “maps” to 249
0

123

199

202

241

255

248

108

177

64

30

(“Madonna:…”, 128.54.37.1)
Maps to 249

Looking for Madonna

n Take the name we’re searching for
(needs to be the exact name!)

n Map it to the internal id
n Lookup the closest node
n It sends back the tuple (and you cache

its address for speedier access if this
happens again!)

Some issues with Chord

n Failures and rejoins are common
n Called the “churn” problem and it leaves

holes in the ring
n Chord has a self-repair mechanism that

each node runs, independently, but it gets
a bit complex

n Also need to replicate information to
ensure that it won’t get lost in a crash

Chord can malfunction if the
network partitions…

0

123

199

202

241

255

248

108
177

64

30

Europe
USA

0

123

199

202

241

255

248

108
177

64

30

Transient Network
Partition

… so, who cares?

n Chord lookups can fail… and it suffers
from high overheads when nodes churn
n Loads surge just when things are already

disrupted… quite often, because of loads
n And can’t predict how long Chord might

remain disrupted once it gets that way

n Worst case scenario: Chord can become
inconsistent and stay that way

The
 Fin

e P
rint

Th
e s

cen
ari

o y
ou

 ha
ve

be
en

 sh
ow

n is
 of

 low
 pr

ob
ab

ility
. I

n a
ll

like
liho

od
, C

ho
rd

wou
ld

rep
air

 its
elf

aft
er

an
y p

art
itio

nin
g f

ailu
re

tha
t m

igh
t re

ally
 ar

ise
. C

ave
at

em
ptor

 an
d al

l th
at.

8

Can we do better?

n Kelips is a Cornell-developed
“distributed hash table”, much like
Chord

n But unlike Chord it heals itself after a
partitioning failure

n It uses gossip to do this…

Kelips (Linga, Gupta, Birman)

30

110

230 202

Take a a collection
of “nodes”

Kelips

0 1 2

30

110

230 202

1N −

N
members
per affinity
group

Map nodes to
affinity groups

Affinity Groups:
peer membership thru

consistent hash

Kelips

0 1 2

30

110

230 202

Affinity Groups:
peer membership thru

consistent hash

1N −

Affinity group
pointers

N
members
per affinity
group

rtthbeatid

30ms322230

90ms23430

Affinity group view

110 knows about
other members –

230, 30…

Affinity Groups:
peer membership thru

consistent hash

Kelips

0 1 2

30

110

230 202

1N −

Contact
pointers

N
members
per affinity
group

rtthbeatid

30ms322230

90ms23430

Affinity group view

……

2022

contactNodegroup

Contacts

202 is a
“contact” for

110 in group 2

Affinity Groups:
peer membership thru

consistent hash

Kelips

0 1 2

30

110

230 202

1N −

Gossip protocol
replicates data

cheaply

N
members
per affinity
group

rtthbeatid

30ms322230

90ms23430

Affinity group view

……

2022

contactNodegroup

Contacts

……

110cnn.com

inforesource

Resource Tuples

“cnn.com” maps to group 2.
So 110 tells group 2 to “route ”
inquiries about cnn.com to it.

9

How it works

n Kelips is entirely gossip based!
n Gossip about membership
n Gossip to replicate and repair data
n Gossip about “last heard from” time used

to discard failed nodes

n Gossip “channel” uses fixed bandwidth
n … fixed rate, packets of limited size

How it works

n Heuristic: periodically ping contacts to check liveness,
RTT… swap so-so ones for better ones.

Node 102

Gossip data stream

Hmm…Node 19 looks like
a much better contact in

affinity group 2

175

19

RT
T: 2

35m
s

RTT: 6 ms

Node 175 is a
contact for Node

102 in some
affinity group

Replication makes it robust

n Kelips should work even during
disruptive episodes
n After all, tuples are replicated to √N nodes
n Query k nodes concurrently to overcome

isolated crashes, also reduces risk that very
recent data could be missed

n … we often overlook importance of
showing that systems work while
recovering from a disruption

Work in progress…

n Prakash Linga is extending Kelips to
support multi-dimensional indexing,
range queries, self-rebalancing

n Kelips has limited incoming “info rate”
n Behavior when the limit is continuously

exceeded is not well understood.
n Will also study this phenomenon

Kelips isn’t alone

n Back at MIT, Barbara Liskov built a
system she calls Epichord
n It uses a Chord-like structure
n But it also has a background gossip

epidemic that heals disruptions caused by
crashes and partitions

n Epichord is immune to the problem
Chord can suffer

Connection to self-stabilization

n Self-stabilization theory
n Describe a system and a desired property

n Assume a failure in which code remains correct
but node states are corrupted

n Proof obligations: property reestablished within
bounded time

n Epidemic gossip: remedy for what ails Chord!
n c.f. Epichord (Liskov)
n Kelips and Epichord are self-stabilizing!

10

Beyond self-stabilization

n Tardos poses a related problem
n Consider behavior of the system while an endless

sequence of disruptive events occurs

n System never reaches a quiescent state
n Under what conditions will it still behave correctly?

n Results of form “if disruptions satisfy ϕ then
correctness property is continuously satisfied”

n Hypothesis: with convergent consistency we
may be able to prove such things

Convergent consistency

n A term used for gossip algorithms that
n Need log(N) time to “mix” new events into

an online system
n Reconverge to their desired state once this

mixing has occurred

n They can be overwhelmingly robust
because gossip can explore an
exponential number of data routes!

Summary

n Gossip is a powerful concept!
n We’ve seen gossip used for tracking membership

and other data (live mashups)

n Gossip for data mining and monitoring
n Gossip for search in big peer-to-peer nets

n Gossip used to “aggregate” system-wide
properties such as load, health of services, etc.

n Coming next: Even MORE uses of gossip!

