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Autonomic computing

n Hot new area intended as a response to 
some of our concerns

n Basic idea is to emulate behaviors 
common in biological systems
n For example: if you rush to class, your 

heart beats faster and you might sweat a 
little… but this isn’t something you “intend”

n The response is an “autonomic” one

Goals for autonomic systems

n The so-called “self-*” properties
n Self-installing
n Self-configuring
n Self-monitoring
n Self-diagnosing and self-repairing
n Adaptive when loads or resources change

n Can we create autonomic systems?

What makes it hard?

n From the inside of a system, options are 
often very limited
n Last time we saw that even detecting a 

failure can be very hard… and that if we 
can’t be sure, making “decisions” can be 
even harder!

n Also, most systems are designed for 
simplicity and speed.  Self-* mechanisms 
add complexity and overhead

Modern approach

n Perhaps better to think of external 
platform tools that help a system out

n The platform can automate tasks that a 
user might find hard to do on their own
n Such as restart after a failure
n You tell the platform “please keep 5 copies 

of my service running.”  If a copy crashes, 
it finds an unloaded node and restarts it

Slight shift in perspective

n Instead of each application needing to 
address these hard problems… we can 
shift the role to standardized software

n It may have ways to solve hard 
problems that end-users can’t access
n Like ways to ask hardware for “help”
n Or lots of ways to sense status
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Werner Vogels (Amazon CTO)

n Discussed “world wide failure detectors”
n Issue: How to sense failure
n We saw that this is hard to get right

n A neighbor’s mailbox is overflowing… 
should you call 911?
n Leaving the mail out isn’t “proof of death”
n Many other ways to sense “health”

How can a platform check health?

n Application exits but O/S is still running
n O/S reboots itself
n NIC card loses carrier, then regains it 

after communication links have broken
n O/S may have multiple communication 

paths…. even if application gets 
“locked” onto just one path

n … the list goes on and on

Vogels proposal?

n He urges that we build large-scale 
“system membership services”
n The service would track membership in the 

data center or network
n Anyone talking to a component would also 

register themselves, and their “interests” 
with the service

n It reports problems, consistently and 
quickly

Such a service can overcome 
Jack and Jill’s problem!

n They couldn’t agree on status
n But a service can make a rule

n Even if an application is running, if it loses 
connection to a majority of the servers 
running the “health service”, we consider it 
to have crashed.

n With this rule, the health abstraction 
can be implemented by the platform!

Jack and Jill with a Failure Detector

n Jack and Jill agree to check their mail at 
least once every ten minutes

n The failure detector, running as a 
system service, monitors their actions

n A failure to check mail triggers a 
system-wide notification
n Terrible news.  Sad tiddings.  Jack is dead!
n If it makes a mistake… tough luck!

How to make TCP use this

n Take TCP
n Disable the “SO_KEEPALIVE” feature
n Now TCP won’t sense timeouts and hence 

will never break a connection

n Now write a wrapper
n User makes a TCP connection… wrapper 

registers with the health service
n Health problem?  Break the connection…m
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A health service is an 
autonomic construct

n How else could we build autonomic 
platform tools?
n For example, could we build a tool to 

robustly notify all the applications when 
something important happens?
n E.g. “System overload!  Please scale back all 

non-vital functionality”

n Could we build a tool to “make a map” 
showing the status of a large system?

Gossip: A valuable tool…

n So-called gossip protocols can be robust 
even when everything else is 
malfunctioning

n Idea is to build a distributed protocol a 
bit like gossip among humans
n “Did you hear that Sally and John are 

going out?”
n Gossip spreads like lightening…

Gossip: basic idea

n Node A encounters “randomly selected” 
node B (might not be totally random)
n Gossip push (“rumor mongering”):

n A tells B something B doesn’t know

n Gossip pull (“anti-entropy”)
n A asks B for something it is trying to “find”

n Push-pull gossip
n Combines both mechanisms

Definition: A gossip protocol…

n Uses random pairwise state merge
n Runs at a steady rate (and this rate is  

much slower than the network RTT)
n Uses bounded-size messages
n Does not depend on messages getting 

through reliably

Gossip benefits… and limitations

n Information flows 
around disruptions

n Scales very well
n Typically reacts to 

new events in log(N)
n Can be made self-

repairing

n Rather slow
n Very redundant
n Guarantees are at 

best probabilistic
n Depends heavily on 

the randomness of 
the peer selection

For example

n We could use gossip to track the health 
of system components

n We can use gossip to report when 
something important happens

n In the remainder of today’s talk we’ll 
focus on event notifications.  Next week 
we’ll look at some of these other uses
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Typical push-pull protocol

n Nodes have some form of database of 
participating machines
n Could have a hacked bootstrap, then use gossip to 

keep this up to date!

n Set a timer and when it goes off, select a 
peer within the database
n Send it some form of “state digest”
n It responds with data you need and its own state 

digest
n You respond with data it needs

Where did the “state” come 
from?

n The data eligible for gossip is usually 
kept in some sort of table accessible to 
the gossip protocol

n This way a separate thread can run the 
gossip protocol

n It does upcalls to the application when 
incoming information is received

Gossip often runs over UDP

n Recall that UDP is an “unreliable” datagram 
protocol supported in internet
n Unlike for TCP, data can be lost

n Also packets have a maximum size, usually 4k or 
8k bytes (you can control this)

n Larger packets are more likely to get lost!

n What if a packet would get too large?
n Gossip layer needs to pick the most valuable stuff 

to include, and leave out the rest!

Algorithms that use gossip

n Gossip is a hot topic!
n Can be used to…

n Notify applications about some event
n Track the status of applications in a system
n Organize the nodes in some way (like into 

a tree, or even sorted by some index)
n Find “things” (like files)

n Let’s look closely at an example

Bimodal multicast

n This is Cornell work from about 10 
years ago

n Goal is to combine gossip with UDP 
(also called IP) multicast to make a very 
robust multicast protocol

Stock Exchange Problem:  
Sometimes, someone is slow…

Most members are 
healthy….

… but one is slow

i.e. something is contending with the red process,
delaying its handling of incoming messages…
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With classical reliable multicast, throughput 
collapses as the system scales up!

n Even if we have just 
one slow receiver… 
as the group gets 
larger (hence more 
healthy receivers), 
impact of a 
performance 
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Why does this happen?

n Most reliable multicast protocols are based on 
an ACK/NAK scheme (like TCP but with multiple 
receivers).  Sender retransmits lost packets.

n As number of receivers gets large ACKS/NAKS 
pile up (sender has more and more work to do)
n Hence it needs longer to discover problems

n And this causes it to buffer messages for longer and 
longer… hence flow control kicks in!

n So the whole group slow down

Start by using unreliable UDP multicast to 
rapidly distribute the message. But some 
messages may not get through, and some 
processes may be faulty.  So initial state 
involves partial distribution of multicast(s)

Periodically (e.g. every 100ms) each process 
sends a digest describing its state to some 
randomly selected group member.  The digest 
identifies messages.  It doesn’t include them.

Recipient checks the gossip digest against its 
own history and solicits a copy of any missing 
message from the process that sent the gossip

Processes respond to solicitations received 
during a round of gossip by retransmitting the 
requested message.  The round lasts much longer 
than a typical RPC time.
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Delivery?  Garbage Collection?

n Deliver a message when it is in FIFO order
n Report an unrecoverable loss if a gap persists for 

so long that recovery is deemed “impractical”

n Garbage collect a message when you believe 
that no “healthy” process could still need a 
copy (we used to wait 10 rounds, but now 
are using gossip to detect this condition)

n Match parameters to intended environment

Need to bound costs

n Worries:
n Someone could fall behind and never catch 

up, endlessly loading everyone else
n What if some process has lots of stuff 

others want and they bombard him with 
requests?

n What about scalability in buffering and in 
list of members of the system, or costs of 
updating that list?

Optimizations

n Request retransmissions most recent 
multicast first

n Idea is to “catch up quickly” leaving at 
most one gap in the retrieved sequence

Optimizations

n Participants bound the amount of data 
they will retransmit during any given 
round of gossip.  If too much is solicited 
they ignore the excess requests

Optimizations

n Label each gossip message with 
senders gossip round number

n Ignore solicitations that have expired 
round number, reasoning that they 
arrived very late hence are probably no 
longer correct

Optimizations

n Don’t retransmit same message twice in 
a row to any given destination (the 
copy may still be in transit hence 
request may be redundant)
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Optimizations

n Use UDP multicast when retransmitting a 
message if several processes lack a copy
n For example, if solicited twice

n Also, if a retransmission is received from “far 
away”

n Tradeoff: excess messages versus low latency

n Use regional TTL to restrict multicast scope

Scalability

n Protocol is scalable except for its use of 
the membership of the full process 
group

n Updates could be costly
n Size of list could be costly
n In large groups, would also prefer not 

to gossip over long high-latency links

Router overload problem

n Random gossip can overload a central 
router

n Yet information flowing through this 
router is of diminishing quality as rate 
of gossip rises

n Insight: constant rate of gossip is 
achievable and adequate
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Idea behind analysis

n Can use the mathematics of epidemic 
theory to predict reliability of the 
protocol

n Assume an initial state
n Now look at result of running B rounds 

of gossip: converges exponentially 
quickly towards atomic delivery

Pbcast bimodal delivery distribution
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Failure analysis

n Suppose someone tells me what they 
hope to “avoid”

n Model as a predicate on final system 
state

n Can compute the probability that pbcast
would terminate in that state, again 
from the model

Two predicates

n Predicate I: A faulty outcome is one 
where more than 10% but less than 
90% of the processes get the multicast 

… Think of a probabilistic Byzantine 
General’s problem: a disaster if many 
but not most troops attack

Two predicates

n Predicate II: A faulty outcome is one where 
roughly half get the multicast and failures 
might “conceal” true outcome 

… this would make sense if using pbcast to 
distribute quorum-style updates to replicated 
data.  The costly hence undesired outcome is 
the one where we need to rollback because 
outcome is “uncertain”

Two predicates

n Predicate I: More than 10% but less than 
90% of the processes get the multicast 

n Predicate II: Roughly half get the multicast 
but crash failures might “conceal” outcome

n Easy to add your own predicate.  Our 
methodology supports any predicate over 
final system state



9

Scalability of Pbcast reliability
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Figure 5: Graphs of analytical results

Experimental work

n SP2 is a large network
n Nodes are basically UNIX workstations

n Interconnect is basically an ATM network
n Software is standard Internet stack (TCP, UDP)

n We obtained access to as many as 128 nodes 
on Cornell SP2 in Theory Center

n Ran pbcast on this, and also ran a second 
implementation on a real network

Example of a question

n Create a group of 8 members
n Perturb one member in style of Figure 1
n Now look at “stability” of throughput

n Measure rate of received messages during 
periods of 100ms each

n Plot histogram over life of experiment
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Histogram of throughput for Ensemble's FIFO 
Virtual Synchrony Protocol
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Notice that in 
practice, bimodal 
multicast is fast!

Now revisit Figure 1 in detail

n Take 8 machines
n Perturb 1
n Pump data in at varying rates, look at 

rate of received messages
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Revisit our original scenario with 
perturbations (32 processes)
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Notice that when network becomes 
overloaded, healthy processes 
experience packet loss!

What about growth of 
overhead?

n Look at messages other than original 
data distribution multicast

n Measure worst case scenario: costs at 
main generator of multicasts

n Side remark: all of these graphs look 
identical with multiple senders or if 
overhead is measured elsewhere….
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n Clearly, overhead does grow
n We know it will be bounded except for 

probabilistic phenomena
n At peak, load is still fairly low

Pbcast versus SRM, 0.1% 
packet loss rate on all links
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Pbcast versus SRM: 300 members on a 
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Pbcast versus SRM: Interarrival spacing (500 
nodes, 300 members, 1.0% packet loss)
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Requests/repairs and latencies 
with bounded router bandwidth
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Summary

n Gossip is a valuable tool for addressing 
some of the needs of modern 
autonomic computing

n Often paired with other mechanisms, eg
anti-entropy paired with UDP multicast

n Solutions scale well (if well designed!)


