
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Autonomic computing

n Hot new area intended as a response to
some of our concerns

n Basic idea is to emulate behaviors
common in biological systems
n For example: if you rush to class, your

heart beats faster and you might sweat a
little… but this isn’t something you “intend”

n The response is an “autonomic” one

Goals for autonomic systems

n The so-called “self-*” properties
n Self-installing
n Self-configuring
n Self-monitoring
n Self-diagnosing and self-repairing
n Adaptive when loads or resources change

n Can we create autonomic systems?

What makes it hard?

n From the inside of a system, options are
often very limited
n Last time we saw that even detecting a

failure can be very hard… and that if we
can’t be sure, making “decisions” can be
even harder!

n Also, most systems are designed for
simplicity and speed. Self-* mechanisms
add complexity and overhead

Modern approach

n Perhaps better to think of external
platform tools that help a system out

n The platform can automate tasks that a
user might find hard to do on their own
n Such as restart after a failure
n You tell the platform “please keep 5 copies

of my service running.” If a copy crashes,
it finds an unloaded node and restarts it

Slight shift in perspective

n Instead of each application needing to
address these hard problems… we can
shift the role to standardized software

n It may have ways to solve hard
problems that end-users can’t access
n Like ways to ask hardware for “help”
n Or lots of ways to sense status

2

Werner Vogels (Amazon CTO)

n Discussed “world wide failure detectors”
n Issue: How to sense failure
n We saw that this is hard to get right

n A neighbor’s mailbox is overflowing…
should you call 911?
n Leaving the mail out isn’t “proof of death”
n Many other ways to sense “health”

How can a platform check health?

n Application exits but O/S is still running
n O/S reboots itself
n NIC card loses carrier, then regains it

after communication links have broken
n O/S may have multiple communication

paths…. even if application gets
“locked” onto just one path

n … the list goes on and on

Vogels proposal?

n He urges that we build large-scale
“system membership services”
n The service would track membership in the

data center or network
n Anyone talking to a component would also

register themselves, and their “interests”
with the service

n It reports problems, consistently and
quickly

Such a service can overcome
Jack and Jill’s problem!

n They couldn’t agree on status
n But a service can make a rule

n Even if an application is running, if it loses
connection to a majority of the servers
running the “health service”, we consider it
to have crashed.

n With this rule, the health abstraction
can be implemented by the platform!

Jack and Jill with a Failure Detector

n Jack and Jill agree to check their mail at
least once every ten minutes

n The failure detector, running as a
system service, monitors their actions

n A failure to check mail triggers a
system-wide notification
n Terrible news. Sad tiddings. Jack is dead!
n If it makes a mistake… tough luck!

How to make TCP use this

n Take TCP
n Disable the “SO_KEEPALIVE” feature
n Now TCP won’t sense timeouts and hence

will never break a connection

n Now write a wrapper
n User makes a TCP connection… wrapper

registers with the health service
n Health problem? Break the connection…m

3

A health service is an
autonomic construct

n How else could we build autonomic
platform tools?
n For example, could we build a tool to

robustly notify all the applications when
something important happens?
n E.g. “System overload! Please scale back all

non-vital functionality”

n Could we build a tool to “make a map”
showing the status of a large system?

Gossip: A valuable tool…

n So-called gossip protocols can be robust
even when everything else is
malfunctioning

n Idea is to build a distributed protocol a
bit like gossip among humans
n “Did you hear that Sally and John are

going out?”
n Gossip spreads like lightening…

Gossip: basic idea

n Node A encounters “randomly selected”
node B (might not be totally random)
n Gossip push (“rumor mongering”):

n A tells B something B doesn’t know

n Gossip pull (“anti-entropy”)
n A asks B for something it is trying to “find”

n Push-pull gossip
n Combines both mechanisms

Definition: A gossip protocol…

n Uses random pairwise state merge
n Runs at a steady rate (and this rate is

much slower than the network RTT)
n Uses bounded-size messages
n Does not depend on messages getting

through reliably

Gossip benefits… and limitations

n Information flows
around disruptions

n Scales very well
n Typically reacts to

new events in log(N)
n Can be made self-

repairing

n Rather slow
n Very redundant
n Guarantees are at

best probabilistic
n Depends heavily on

the randomness of
the peer selection

For example

n We could use gossip to track the health
of system components

n We can use gossip to report when
something important happens

n In the remainder of today’s talk we’ll
focus on event notifications. Next week
we’ll look at some of these other uses

4

Typical push-pull protocol

n Nodes have some form of database of
participating machines
n Could have a hacked bootstrap, then use gossip to

keep this up to date!

n Set a timer and when it goes off, select a
peer within the database
n Send it some form of “state digest”
n It responds with data you need and its own state

digest
n You respond with data it needs

Where did the “state” come
from?

n The data eligible for gossip is usually
kept in some sort of table accessible to
the gossip protocol

n This way a separate thread can run the
gossip protocol

n It does upcalls to the application when
incoming information is received

Gossip often runs over UDP

n Recall that UDP is an “unreliable” datagram
protocol supported in internet
n Unlike for TCP, data can be lost

n Also packets have a maximum size, usually 4k or
8k bytes (you can control this)

n Larger packets are more likely to get lost!

n What if a packet would get too large?
n Gossip layer needs to pick the most valuable stuff

to include, and leave out the rest!

Algorithms that use gossip

n Gossip is a hot topic!
n Can be used to…

n Notify applications about some event
n Track the status of applications in a system
n Organize the nodes in some way (like into

a tree, or even sorted by some index)
n Find “things” (like files)

n Let’s look closely at an example

Bimodal multicast

n This is Cornell work from about 10
years ago

n Goal is to combine gossip with UDP
(also called IP) multicast to make a very
robust multicast protocol

Stock Exchange Problem:
Sometimes, someone is slow…

Most members are
healthy….

… but one is slow

i.e. something is contending with the red process,
delaying its handling of incoming messages…

5

With classical reliable multicast, throughput
collapses as the system scales up!

n Even if we have just
one slow receiver…
as the group gets
larger (hence more
healthy receivers),
impact of a
performance
perturbation is more
and more evident! 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

50

100

150

200

250
Virtually synchronous Ensemble multicast protocols

perturb rate

av
er

ag
e

th
ro

ug
hp

ut
 o

n
n

o
n

p
er

tu
rb

ed
m

em
b

er
s group size: 32

group size: 64
group size: 96

32

96

Why does this happen?

n Most reliable multicast protocols are based on
an ACK/NAK scheme (like TCP but with multiple
receivers). Sender retransmits lost packets.

n As number of receivers gets large ACKS/NAKS
pile up (sender has more and more work to do)
n Hence it needs longer to discover problems

n And this causes it to buffer messages for longer and
longer… hence flow control kicks in!

n So the whole group slow down

Start by using unreliable UDP multicast to
rapidly distribute the message. But some
messages may not get through, and some
processes may be faulty. So initial state
involves partial distribution of multicast(s)

Periodically (e.g. every 100ms) each process
sends a digest describing its state to some
randomly selected group member. The digest
identifies messages. It doesn’t include them.

Recipient checks the gossip digest against its
own history and solicits a copy of any missing
message from the process that sent the gossip

Processes respond to solicitations received
during a round of gossip by retransmitting the
requested message. The round lasts much longer
than a typical RPC time.

6

Delivery? Garbage Collection?

n Deliver a message when it is in FIFO order
n Report an unrecoverable loss if a gap persists for

so long that recovery is deemed “impractical”

n Garbage collect a message when you believe
that no “healthy” process could still need a
copy (we used to wait 10 rounds, but now
are using gossip to detect this condition)

n Match parameters to intended environment

Need to bound costs

n Worries:
n Someone could fall behind and never catch

up, endlessly loading everyone else
n What if some process has lots of stuff

others want and they bombard him with
requests?

n What about scalability in buffering and in
list of members of the system, or costs of
updating that list?

Optimizations

n Request retransmissions most recent
multicast first

n Idea is to “catch up quickly” leaving at
most one gap in the retrieved sequence

Optimizations

n Participants bound the amount of data
they will retransmit during any given
round of gossip. If too much is solicited
they ignore the excess requests

Optimizations

n Label each gossip message with
senders gossip round number

n Ignore solicitations that have expired
round number, reasoning that they
arrived very late hence are probably no
longer correct

Optimizations

n Don’t retransmit same message twice in
a row to any given destination (the
copy may still be in transit hence
request may be redundant)

7

Optimizations

n Use UDP multicast when retransmitting a
message if several processes lack a copy
n For example, if solicited twice

n Also, if a retransmission is received from “far
away”

n Tradeoff: excess messages versus low latency

n Use regional TTL to restrict multicast scope

Scalability

n Protocol is scalable except for its use of
the membership of the full process
group

n Updates could be costly
n Size of list could be costly
n In large groups, would also prefer not

to gossip over long high-latency links

Router overload problem

n Random gossip can overload a central
router

n Yet information flowing through this
router is of diminishing quality as rate
of gossip rises

n Insight: constant rate of gossip is
achievable and adequate

0 10 20 30 40 50 60 70 80 90 100
0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 8 0

2 0 0

sec

nm
sg

s/
se

c

Uniform
Hierarchical

0 5 10 15 20 25 30
0

50

100

150

group size

n
m

sg
s/

se
c

Uniform
Hierarchical

Sender

Receiver

High noise rate

Sender

Receiver

Limited
bandwidth
(1500Kbits)

Bandwidth of
other
links:10Mbits

Lo
ad

 o
n

W
A

N
 l

in
k

(m
sg

s/
se

c)

La
te

nc
y

to
 d

el
iv

er
y

(m
s)

Hierarchical Gossip

n Weight gossip so that probability of
gossip to a remote cluster is smaller

n Can adjust weight to have constant load
on router

n Now propagation delays rise… but just
increase rate of gossip to compensate

0 5 10 15 20 25 30
0

500

1000

1500

group size

pr
op

ag
at

io
n

tim
e(

m
s)

Uniform
Hierarchical
Fast hierarchical

0 5 10 15 20 25 30
0

50

100

150

group size

nm
sg

s/
se

c

Uniform
Hierarchical
Fast hierarchical

8

Idea behind analysis

n Can use the mathematics of epidemic
theory to predict reliability of the
protocol

n Assume an initial state
n Now look at result of running B rounds

of gossip: converges exponentially
quickly towards atomic delivery

Pbcast bimodal delivery distribution

1.E-30

1.E-25

1.E-20

1.E-15

1.E-10

1.E-05

1.E+00

0 5 10 15 20 25 30 35 40 45 50

number of processes to deliver pbcast

p{
#p

ro
ce

ss
es

=k
}

Either sender
fails…

… or data gets
through w.h.p .

Failure analysis

n Suppose someone tells me what they
hope to “avoid”

n Model as a predicate on final system
state

n Can compute the probability that pbcast
would terminate in that state, again
from the model

Two predicates

n Predicate I: A faulty outcome is one
where more than 10% but less than
90% of the processes get the multicast

… Think of a probabilistic Byzantine
General’s problem: a disaster if many
but not most troops attack

Two predicates

n Predicate II: A faulty outcome is one where
roughly half get the multicast and failures
might “conceal” true outcome

… this would make sense if using pbcast to
distribute quorum-style updates to replicated
data. The costly hence undesired outcome is
the one where we need to rollback because
outcome is “uncertain”

Two predicates

n Predicate I: More than 10% but less than
90% of the processes get the multicast

n Predicate II: Roughly half get the multicast
but crash failures might “conceal” outcome

n Easy to add your own predicate. Our
methodology supports any predicate over
final system state

9

Scalability of Pbcast reliability

1.E-35

1.E-30

1.E-25

1.E-20

1.E-15

1.E-10

1.E-05

10 15 20 25 30 35 40 45 50 55 60

#processes in system

P{
fa

ilu
re

}

Predicate I Predicate II

Effects of fanout on reliability

1.E-16
1.E-14
1.E-12
1.E-10
1.E-08
1.E-06
1.E-04
1.E-02
1.E+00

1 2 3 4 5 6 7 8 9 1 0

fanout

P{
fa

ilu
re

}

Predicate I Predicate II

Fanout required for a specified reliability

44.5
55.5
66.5
77.5
88.5
9

20 25 30 35 40 45 50

#processes in system

fa
no

ut

Predicate I for 1E-8 reliability

Predicate II for 1E-12 reliability

Pbcast bimodal delivery distribution

1.E-30

1.E-25

1.E-20

1.E-15

1.E-10

1.E-05

1.E+00

0 5 10 15 20 25 30 35 40 45 50

number of processes to deliver pbcast

p{
#p

ro
ce

ss
es

=k
}

Scalability of Pbcast reliability

1.E-35

1.E-30

1.E-25

1.E-20

1.E-15

1.E-10

1.E-05

10 15 20 25 30 35 40 45 50 55 60

#processes in system

P
{fa

ilu
re

}

Predicate I Predicate II

Effects of fanout on reliability

1.E-16
1.E-14
1.E-12
1.E-10

1.E-08
1.E-06
1.E-04
1.E-02
1.E+00

1 2 3 4 5 6 7 8 9 1 0

fanout

P
{f

ai
lu

re
}

Predicate I Predicate II

Fanout required for a specified reliability

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9

20 25 30 35 40 45 50

#processes in system
fa

no
ut

Predicate I for 1E-8 reliability

Predicate II for 1E-12 reliability

Figure 5: Graphs of analytical results

Experimental work

n SP2 is a large network
n Nodes are basically UNIX workstations

n Interconnect is basically an ATM network
n Software is standard Internet stack (TCP, UDP)

n We obtained access to as many as 128 nodes
on Cornell SP2 in Theory Center

n Ran pbcast on this, and also ran a second
implementation on a real network

Example of a question

n Create a group of 8 members
n Perturb one member in style of Figure 1
n Now look at “stability” of throughput

n Measure rate of received messages during
periods of 100ms each

n Plot histogram over life of experiment

10

Histogram of throughput for Ensemble's FIFO
Virtual Synchrony Protocol

0

0.2

0.4

0.6

0.8

0.0
05

0.0
15

0.0
25

0.0
35

0.0
45

0.0
55

0.06
5

Inter-arrival spacing (ms)

P
ro

b
ab

ili
ty

 o
f o

cc
u

re
n

ce

Traditional Protocol
with .05 sleep
probability

Traditional Protocol
with .45 sleep
probability

Histogram of throughput for pbcast

0

0.2

0.4

0.6

0.8

1

0.0
05

0.0
15

0.0
25

0.0
35

0.0
45

0.0
55

0.0
65

Inter-arrival spacing (ms)

P
ro

ba
bi

lit
y

of
 o

cc
ur

en
ce

Pbcast with .05
sleep probability

Pbcast with .45
sleep probability

Source to dest latency distributions

Notice that in
practice, bimodal
multicast is fast!

Now revisit Figure 1 in detail

n Take 8 machines
n Perturb 1
n Pump data in at varying rates, look at

rate of received messages

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140

160

180

200
Low bandwidth comparison of pbcast performance at faulty and correct hosts

perturb rate

av
er

ag
e

th
ro

ug
hp

ut

traditional w/1 perturbed
pbcast w/1 perturbed
throughput for traditional, measured at perturbed host
throughput for pbcast measured at perturbed host

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140

160

180

200
High bandwidth comparison of pbcast performance at faulty and correct hosts

perturb rate

av
er

ag
e

th
ro

ug
hp

ut

traditional: at unperturbed host
pbcast: at unperturbed host
traditional: at perturbed host
pbcast: at perturbed host

Revisit our original scenario with
perturbations (32 processes)

0 0.05 0 . 1 0.15 0 . 2 0.25 0.3 0.35 0.4 0.45 0.5
1 8 0

1 8 5

1 9 0

1 9 5

2 0 0

2 0 5

2 1 0

2 1 5

2 2 0
mean and standard deviation of pbcast throughput: 16-member group

perturb rate

th
ro

ug
hp

ut
 (

m
sg

s/
se

c)

0 0.05 0 . 1 0.15 0 . 2 0.25 0.3 0.35 0.4 0.45 0.5
1 8 0

1 8 5

1 9 0

1 9 5

2 0 0

2 0 5

2 1 0

2 1 5

2 2 0
mean and standard deviation of pbcast throughput: 96-member group

perturb rate

th
ro

ug
hp

ut
 (

m
sg

s/
se

c)

0 0.05 0 . 1 0.15 0 . 2 0.25 0.3 0.35 0.4 0.45 0.5
1 8 0

1 8 5

1 9 0

1 9 5

2 0 0

2 0 5

2 1 0

2 1 5

2 2 0
mean and standard deviation of pbcast throughput: 128-member group

perturb rate

th
ro

ug
hp

ut
 (

m
sg

s/
se

c)

0 5 0 100 150
0

5 0

1 0 0

1 5 0
standard deviation of pbcast throughput

process group size

st
an

da
rd

 d
ev

ia
tio

n

Throughput variation as a
function of scale

Impact of packet loss on
reliability and retransmission rate

0 0.05 0.1 0.15 0 . 2 0 .25 0.3 0.35 0.4 0.45 0 . 5
0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

100
Pbcast background overhead: perturbed process percentage (25%)

perturb rate

re
tr

an
sm

itt
ed

 m
es

sa
ge

s (
%

)

8 nodes
16 nodes
64 nodes
128 nodes

0 0.02 0.04 0 .06 0.08 0 . 1 0.12 0 .14 0.16 0.18 0.2
0

2 0

4 0

6 0

8 0

100

120

140

160

180

200

Pbcast with system-wide message loss: high and low bandwidth

system-wide drop rate

av
er

ag
e

th
ro

ug
hp

ut
 o

f r
ec

ei
ve

rs

hbw:8
hbw:32
hbw:64
hbw:96
lbw:8
lbw:32

lbw:64
lbw:96

Notice that when network becomes
overloaded, healthy processes
experience packet loss!

What about growth of
overhead?

n Look at messages other than original
data distribution multicast

n Measure worst case scenario: costs at
main generator of multicasts

n Side remark: all of these graphs look
identical with multiple senders or if
overhead is measured elsewhere….

11

64 nodes - 16 perturbed processes

0
20

40
60
80

100

0.1 0.2 0.3 0.4 0.5

perturb rate

av
er

ag
e

ov
er

he
ad

128 nodes - 32 perturbed processes

0
20

40
60
80

100

0.1 0.2 0.3 0.4 0.5

perturb rate

av
er

ag
e

ov
er

he
ad

8 nodes - 2 perturbed processes

0
20

40
60
80

100

0.1 0.2 0.3 0.4 0.5

perturb rate

av
er

ag
e

ov
er

he
ad

(m

sg
s/

se
c)

16 nodes - 4 perturbed processes

0
20
40

60
80

100

0.1 0.2 0.3 0.4 0.5

perturb rate

av
er

ag
e

ov
er

he
ad Growth of Overhead?

n Clearly, overhead does grow
n We know it will be bounded except for

probabilistic phenomena
n At peak, load is still fairly low

Pbcast versus SRM, 0.1%
packet loss rate on all links

0 10 20 30 40 50 60 70 80 90 1 0 0
0

5

10

15
PBCAST and SRM with system wide constant noise, tree topology

group size

re
qu

es
ts

/s
ec

 re
ce

iv
ed

SRM

Pbcast

adaptive SRM

Pbcast-IPMC

0 10 20 30 40 50 60 70 80 90 1 0 0
0

5

10

15
PBCAST and SRM with system wide constant noise, tree topology

group size

re
pa

irs
/s

ec
 re

ce
iv

ed

SRM

Pbcast

adaptive SRM

Pbcast-IPMC

0 10 20 30 40 50 60 70 80 90 1 0 00

5

10

15
PBCAST and SRM with system wide constant noise, star topology

group size

re
qu

es
ts

/s
ec

 r
ec

ei
ve

d SRM

Pbcast

adaptive SRM

Pbcast-IPMC
0 10 20 30 40 50 6 0 70 80 90 1 0 00

10

20

30

40

50

60
PBCAST and SRM with system wide constant noise, star topology

group size

re
pa

irs
/s

ec
 r

ec
ei

ve
d

SRM

P b c a s t

adaptive SRM

Pbcast-IPMC

Tree
networks

Star
networks

Pbcast versus SRM: link
utilization

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50
PBCAST and SRM with system wide constant noise, tree topology

group size

lin
k

ut
ili

za
tio

n
on

 a
n

ou
tg

oi
ng

 li
nk

 fr
om

 s
en

de
r

Pbcast
Pbcast-IPMC
SRM
Adaptive SRM

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20
PBCAST and SRM with system wide constant noise, tree topology

group size

lin
k

ut
ili

za
tio

n
on

 a
n

in
co

m
in

g
lin

k
to

 s
en

de
r

Pbcast
Pbcast-IPMC
SRM
Adaptive SRM

Pbcast versus SRM: 300 members on a
1000-node tree, 0.1% packet loss rate

0 2 0 40 60 80 100 120
0

5

1 0

1 5

2 0

2 5

3 0
Pbcast and SRM with 0.1% system wide constant noise, 1000-node tree topology

group size

re
qu

es
ts

/s
ec

 r
ec

ei
ve

d

SRM

Pbcast

adaptive SRM

Pbcast-IPMC

0 2 0 4 0 60 80 100 120
0

5

1 0

1 5

2 0

2 5

3 0
Pbcast and SRM with 0.1% system wide constant noise, 1000-node tree topology

group size

re
pa

irs
/s

ec
 r

ec
ei

ve
d SRM

Pbcast

adaptive SRM

Pbcast-IPMC

Pbcast Versus SRM:
Interarrival Spacing

12

Pbcast versus SRM: Interarrival spacing (500
nodes, 300 members, 1.0% packet loss)

0 0.05 0 . 1 0.15 0 . 2 0.25 0 . 3 0.35 0 . 4 0.45 0 . 5
0

10

20

30

40

50

60

70

80

90

100
1% system wide noise, 500 nodes, 300 members, pbcast-grb

latency at node level (second)

pe
rc

en
ta

ge
 o

f
oc

cu
rr

en
ce

s

0 0.05 0 . 1 0.15 0 . 2 0.25 0 . 3 0.35 0 . 4 0.45 0 . 5
0

10

20

30

40

50

60

70

80

90

100
1% system wide noise, 500 nodes, 300 members, pbcast-grb

latency after FIFO ordering (second)

pe
rc

en
ta

ge
 o

f
oc

cu
rr

en
ce

s

0 0.05 0 . 1 0.15 0 . 2 0.25 0 . 3 0.35 0 . 4 0.45 0 . 5
0

10

20

30

40

50

60

70

80

90

100
1% system wide noise, 500 nodes, 300 members, srm

latency at node level (second)

pe
rc

en
ta

ge
 o

f
oc

cu
rr

en
ce

s

Real Data: Bimodal Multicast on a
10Mbit ethernet (35 Ultrasparc’s)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

sec

0 10 20 30 40 50 60 70 80 90 100
50

60

70

80

90

100

110

120

130

140

150

s e c

#
m

sg
s

Injected noise, retransmission
limit disabled

Injected noise, retransmission
limit re-enabled

Networks structured as
clusters

Sender

Receiver

High noise rate

Sender

Receiver

Limited
bandwidth
(1500Kbits)

Bandwidth of
other
links:10Mbits

Delivery latency in a 2-cluster LAN,
50% noise between clusters, 1% elsewhere

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45
partitioned nw, 50% noise between clusters, 1% system wide noise, n=80, pbcast-grb

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45
partitioned nw, 50% noise between clusters, 1% system wide noise, n=80, pbcast-grb

latency after FIFO ordering (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45
srm

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45
srm adaptive

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

Requests/repairs and latencies
with bounded router bandwidth

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

200
limited bw on router, 1% system wide constant noise

group size

re
qu

es
ts

/s
ec

 r
ec

ei
ve

d

pbcast-grb
s r m

0 20 40 60 80 100 120
0

20

40

60

80

100

120
limited bw on router, 1% system wide constant noise

group size

re
pa

irs
/s

ec
 re

ce
iv

ed

pbcast-grb
srm

0 2 4 6 8 10 12 14 16 18 200

5

10

15
limited bw on router, noise=1%, n=100, pbcast-grb

latency at node level (second)

pe
rc

en
ta

ge
 of

 oc
cu

rr
en

ce
s

0 2 4 6 8 10 12 14 16 18 200

5

10

15
limited bw on router, noise=1%, n=100, pbcast-grb

latency after FIFO ordering (second)

pe
rc

en
ta

ge
 of

 oc
cu

rr
en

ce
s

0 2 4 6 8 10 12 14 16 18 200

5

10

15
limited bw on router, noise=1%, n=100, srm

latency at node level (second)

pe
rc

en
ta

ge
 of

 oc
cu

rr
en

ce
s

Summary

n Gossip is a valuable tool for addressing
some of the needs of modern
autonomic computing

n Often paired with other mechanisms, eg
anti-entropy paired with UDP multicast

n Solutions scale well (if well designed!)

