
1/29/2007

1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Programming Web Services

We’ve been somewhat client centric
Looked at how a client binds to and invokes a
Web Service
Discussed the underlying RPC protocols
Explored issues associated with discovery

But we’ve only touched upon the data center
side
Today discuss the options and identify some
tough technical challenges

(Sidebar)

Not all Web Services will be data
centers

Intel is using Web Services to access
hardware instrumentation
Many kinds of sensors and actuators will
use Web Services interfaces too
Even device drivers and other OS internals
are heading this way!

But data centers will be a BIG deal…

Reminder: Client to eStuff.com

We think of remote method invocation
and Web Services as a simple chain
This oversimplifies challenge of “naming

Web
ServiceWeb

ServiceWeb
Services

This oversimplifies challenge of naming
and discovery”

Client
system

Soap RPC
SOAP
router

A glimpse inside eStuff.com

“front-end applications”

Pub-sub combined with point-to-point
communication technologies like TCP

LB

service

LB

service

LB

service

LB

service

LB

service

LB

service

What other issues arise?
How does one build scalable, cluster-style
services to run inside a cluster

The identical issues arise with CORBA
What tools currently exist within WebWhat tools currently exist within Web
Services?
Today: explore process of slowing scaling up
a service to handle heavier and heavier loads

Start by exploring single-server issues
Then move to clustering, and role of the publish-
subscribe paradigm
We’ll touch on some related reliability issues

1/29/2007

2

Building a Web Service: Step 1

Most applications start as a single
program that uses CORBA or Web
ServicesServices

Like the temperature service
Exports its interfaces (WSDL, UDDI)
Clients discover service, important
interfaces and can do invocations

Suppose that demand grows?

Step 2 is to just build a faster server
Port code to run on a high-end machine
Use multi-threading to increase internalUse multi threading to increase internal
capacity

What are threads?
Concept most people were exposed to in
CS414, but we’ll review very briefly

Threads

We think of a program as having a sort
of virtual CPU dedicated to it

So your program has a “PC” telling whatSo your program has a PC telling what
instruction to execute next, a stack, its
own registers, etc

Idea of threads is to have multiple
virtual CPUs dedicated to a single
program, sharing memory

Threads

Each thread has:
Its own stack (bounded maximum size)
A function that was called when it started (like
“main” in the old single-threaded style)
Its own registers and PC

Threads share global variables and memory
The system provides synchronization
mechanisms, like locks, so that threads can
avoid stepping on one-another

Challenges of using threads

Two major ways to exploit threads in
Web Services and similar servers

1. Each incoming request can result in g q
the launch of a new thread

2. Incoming requests can go into
“request queues”. Small pools of
threads handle each pool
We refer to these as “event” systems

Example Event System

(Not limited to data centers… also common in
telecommunications, where it’s called “workflow

programming”)

1/29/2007

3

Problems with threads
Event systems may process LOTS of events
But existing operating systems handle large
numbers of threads poorly

A major issue is the virtual memory consumptionA major issue is the virtual memory consumption
of all those stacks
With many threads, a server will start to thrash
even if the “actual workload” is relatively light
If threads can block (due to locks) this is
especially serious

See: Using Threads in Interactive Systems: A
Case Study (Hauser et al; SOSP 1993)

Sometimes we can do better

SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services
(Welsh, 2001)(Welsh, 2001)

Analyzes threads vs event-based systems,
finds problems with both
Suggests trade-off: stage-driven
architecture
Evaluated for two applications

Easy to program and performs well

SEDA Stage Threaded Server Throughput

Source: SEDA: An Architecture for Well-Conditioned, Scalable Internet Services (Welsh, SOSP 2001)

Event-driven Server
Throughput What if load is still too high?

The trend towards clustered
architectures arises because no single-
machine solution is really adequatemachine solution is really adequate
Better scheme is to partition the work
between a set of inexpensive computers

Called a “blade” architecture
Ideally we simply subdivide the “database”
into disjoint portions

1/29/2007

4

A RAPS of RACS (Jim Gray)

RAPS: A reliable array of partitioned
services
RACS: A reliable array of cluster-

x y z

RACS: A reliable array of cluster-
structured server processes

Ken Birman searching
for “digital camera”

Pmap “B-C”: {x, y, z} (equivalent replicas)

Here, y gets picked, perhaps based on load

A set of RACS

RAPS

RACS: Two perspectives

A load-balancer
(might be hardware)
in front of a set of

l b h

A partitioning
function (probably
software), then

d hreplicas, but with
“affinity” mechanism

random choice
within replicas

LB

service x y z

client client

pmap does “partition mapping”

Affinity

Problem is that many clients will talk to
a service over a period of time

Think: Amazon.com, series of clicks to pick
the digital camera you prefer

This builds a “history” associated with
recent interactions, and cached data
We say that any server with the history
has an affinity for subsequent requests

Affinity issues favor pmap

Hardware load balancers are very fast
But can be hard to customize
Affinity will often be “keyed” by some formAffinity will often be keyed by some form
of content in request
HLB would need to hunt inside the request,
find the content, then do mapping
Easy to implement in software… and
machines are getting very fast…

Our platform in a datacenter

Query source Update source

Services are hosted at data centers but accessible system -wide

pmap
pmap

Data center A Data center B

pmap

Server pool

l2P
map

Logical partitioning of services

Logical services map to a physical
resource pool, perhaps many to one

Operators have
some control but
many adaptations

are automated

Problems we’ll now face

The single client wants to talk to the
“correct” server, but discovers the
service by a single name.

How can we implement pmap?
We need to replicate data within a
partition

How should we solve this problem?
Web Services don’t tackle this

1/29/2007

5

More problems

Our system is complex
How to administer?
How should the system sense load changesHow should the system sense load changes
Can we vary the sizes of partitions?
How much can be automated?
To what degree can we standardize the
architecture?
What if something fails?

Event “notification” in WS
Both CORBA and Web Services tackle just a
small subset of these issues
They do so through a

Notification (publish-subscribe) optionNotification (publish subscribe) option
Notification comes in two flavors; we’ll focus on
just one of them (WS_NOTIFICATION)
Can be combined with “reliable” event queuing

Very visible to you as the developer:
Notification and reliable queuing require “optional”
software (must buy it) and work by the developer.
Not trivial to combine the two mechanisms

Publish-subscribe basics

Dates to late 1980’s, work at Stanford,
Cornell, then commercialized by TIBCO
and ISISand ISIS
Support an interface like this:

Publish(“topic”, “message”)
Subscribe(“topic”, handler)

On match, platform calls handler(msg)

Publish-subscribe basics

Message “bus”

client

Publish(“red”, “caution, accident ahead”)

Message bus

Subscribe(“red”, GotRedMsg); Subscribe(“red”, GotRedMsg);
Subscribe(“blue”, GotBlueMsg

GotRedMsg(“Caution…”); GotRedMsg(“Caution…”);

Bus does a multicast

WS_NOTIFICATION

In Web Services, this is one of two
standards for describing a message bus

The other is a combination ofThe other is a combination of
WS_EVENTING and WS_NAMING but
seems to be getting less “traction”

Also includes “content filtering” after
receipt of message
No reliability guarantees

How it works

WS-Notification and WS-Eventing both
assume that there is a server running
the event notification systemthe event notification system

To publish a message, send it to the server
To subscribe, tell the server what you are
interested in
The server does the match-making and
sends you matching messages

1/29/2007

6

A brief aside (a complaint)

Indirection through a server is slow
Many pub-sub systems let data flow
directly from publish to subscriber fordirectly from publish to subscriber, for
example using UDP multicast
But WS-Notification and WS-Eventing
don’t allow that pattern. This seems to
be an oversight by the standards group.

Content filtering

Basic idea is simple
First deliver the message based on topic
But then apply an XML query to the pp y q y
message
Discard any message that doesn’t match

Application sees only messages that
match both topic and query
But costs of doing the query can be big

What about reliability?

Publish-subscribe technologies are
usually reliable, but the details vary

For example, TIB message bus will retry
for 90 seconds, then discard a message if
some receiver isn’t acknowledging receipt
And some approaches assume that the
receiver, not the sender, is responsible for
reliability

In big data centers, a source of trouble

Broadcast Storms
A phenomenon of high loss rates seen when
message bus is under heavy load

Requires very fast network hardware and multiple
senders
With multicast, can get many back-to-back
incoming messages at some receivers
These get overwhelmed and drop messages, must
solicit retransmission
The retransmissions now swamp the bus

Storms can cause network “blackouts” for
extended periods (minutes)!

What about WS_RELIABILITY?

Many people naïvely assume that this
standard will eliminate problems of the
sort just describedsort just described
Not so!

WS_RELIABILITY “looks” like it matches
the issue
But in fact is concerned with a different
problem….

Recall our naïve WS picture

What happens if the Web Service isn’t
continuously available?

Router could reject requestRouter could reject request
But some argue for “message queuing”

Web
ServiceWeb

ServiceWeb
Services

Client
system

Soap RPC
SOAP
router

1/29/2007

7

Message queuing middleware

A major product category
IBM MQSeries, HP MessageQueue, etc
Dates back to early client-server period when
talking to mainframes was a challenge
Idea: Client does an RPC to “queue” request in a
server, which then hands a batch of work to the
mainframe, collects replies and queues them
Client later picks up reply

WS_RELIABILITY

This standard is “about” message
queuing middleware

It allows the client to specify behavior inIt allows the client to specify behavior in
the event that something fails and later
restarts

At most once: easiest to implement
At least once: requires disk logging
Exactly once: requires complex protocol and
special server features. Not always available

Can a message bus be reliable?

Publish-subscribe systems don’t
normally support this reliability model
Putting a message queue “in front” of aPutting a message queue in front of a
message bus won’t help

Unclear who, if anyone, is “supposed” to
receive a message when using pub-sub
The bus bases reliability on current
subscribers, not “desired behavior”

Back to our data center

Query source Update source

Services are hosted at data centers but accessible system -wide

pmap
pmap

Data center A Data center B

pmap

Server pool

l2P
map

Back to our data center

We’re finding many gaps between what
Web Services offer and what we need!
Good news?

Many of the mechanisms do exist
Bad news?

They don’t seem to fit together to solve
our problem!
Developers would need to hack around this

Where do we go from here?

We need to dive down to basics
Understand:

What does it take to build a trustworthy y
distributed computing system?
How do the technologies really work?
Can we retrofit solutions into Web Services?

Our goal? A “scalable, trustworthy, services
development framework”.

