CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Perspectives on Computing Systems
and Networks

= (CS314: Hardware and architecture

= CS414: Operating Systems

= CS513: Security for operating systems and apps
= CS514: Emphasis on “middleware”: networks,

distributed computing, technologies for building
reliable applications over the middleware

= (CS519: Networks, aimed at builders and users

= CS614: A survey of current research frontiers in the
operating systems and middleware space
= CS619: A reading course on research in networks

= CS514 tries to be practical in emphasis:
= We look at the tools used in real products and real systems
= The focus is on technology one could build / buy
= But not specific products
= Our emphasis:
= What's out there?
= How does it work?
= What are its limits?
= Can we find ways to hack around those limits?

Our topic

= Computing systems are growing
= ... larger,
= ... and more complex,
= ... and we are hoping to use them in a more and
more “unattended” manner
= Peek under the covers of the toughest, most
powerful systems that exist
= Then ask: What can existing platforms do?
= Can we do better?

Some “factoids”

= Companies like Amazon, Google, eBay
are running data centers with tens of
thousands of machines
= Credit card companies, banks, brokerages,

insurance companies close behind

= Rate of growth is staggering

= Meanwhile, a new rollout of wireless
sensor networks is poised to take off

How are big systems structured?

Typically a “data center” of web servers
= Some human-generated traffic
= Some automatic traffic from WS clients

= The front-end servers are connected to a pool
of clustered back-end application “services”

= All of this load-balanced, multiported

= Extensive use of caching for improved
performance and scalability

= Publish-subscribe very popular

. . “front-end applications” . .

Pub-sub combined with point-to-point
communication technologies like TCP

Industry trend: Web services
= Service oriented architectures are

becoming the dominant standard in this
area

= But how well do the major platforms

support creation of services for use in
such settings?

= Suppose one wanted to build an
application that

= Has some sort of “dynamic” state (receives
updates)

= Load-balances queries
= |Is fault-tolerant
= How would we do this?

Today’s prevailing solution

Middle tier runs
Clients business logic

Concerns?

= Potentially slow (especially during
failures)

= Doesn’'t work well for applications that
don’t split cleanly between “persistent”
state (that can be stored in the
database) and “business logic” (which
has no persistent state)

Can we do better?

= What about some form of in-memory
database

= Could be a true database

= Or it could be any other form of storage
“local” to the business logic tier

= This eliminates the back-end database
= But how can we build such a thing?

= RAPS: A reliable array of partitioned
subservices
= RACS: A reliable array of cloned server
A set of RACS

processes
Pmap “B-C” {x, y, z} (equivalent replicas)
Ken Birman searching
for “digital camera’ [

Here, y gets picked, perhaps based on load

RAPS of RACS in Data Centers

Servicesarehosted at data centersbut accessible systerwide

m\

Ot coner &

[

g ey o s

ﬂ Scalability makes this hard!

= Membership = Resource management
= Within RACS = Pool of machines
= Of the service = Set of services
= Services in data centers = Subdivision into RACS

= Communication = Fault-tolerance
= Point-to-point = Consistency and
= Multicast monitoring mechanisms

= Long-distance links

= Tools to build scalable services lacking today!
= Web services
= Standardizes the client — data center path
= But treats the internal structure of the data center
as a black box
= Three-tier middleware (databases) can help
= But some applications don't fit this model

= Most data centers are interconnected by
= Extremely fast links (10-40 Gbit)
= But with high latency

= Protocols such as TCP can’t run at high
speeds unless latency is low

= This implies that we may need new
protocols if we plan to interconnect
data centers over large scale

= Basically two options
= Study the fundamentals

= Then apply to specific tools
= Or

= Study specific tools

= Extract fundamental insights from
examples

Understanding Trends

= Basically two options
= Study the fundamentals
= Then apply to specific tools

ﬂ Ken's bias

= | work on reliable, secure distributed
computing
= Air traffic control systems, stock exchanges,
electric power grid
= Military “Information Grid” systems
= Modern data centers
= To me, the question is:

How can we build systems that do what we need
them to do, reliably, accurately, and securely?

Butler Lampson’s Insight

= Why computer scientists didn’t invent the
web
= CS researchers would have wanted it to “work”
= The web doesn'’t really work
= But it doesn't really need to!

= Gives some reason to suspect that Ken's bias
isn't widely shared!

Example: Air Traffic Control

= Assume a “private” network

= Web browser could easily show planes,
natural for controller interactions

= What “properties” would the system need?

= Clearly need to know that trajectory and flight
data is current and consistent
= We expect it to give sensible advice on routing
options (e.g. not propose dangerous routes)
= Continuous availability is vital: zero downtime
= Expect a soft form of real-time responsiveness
= Security and privacy also required (post 9/11!)

ATC systems divide country up

France

ﬁ More details on ATC

= Data comes from a radar system that

= Database keeps other flight data
= Controllers each “own” smaller sub-sectors

Each sector has a control center

Centers may have few or many (50)
controllers

= In USA, controller works alone

= In France, a “controller” is a team of 3-5 people

broadcasts updates every 10 seconds

Issues with old systems

= Overloaded computers that often crash
= Attempt to build a replacement system failed,
expensively, back in 1994
= Getting slow as volume of air traffic rises
= Inconsistent displays a problem: phantom
planes, missing planes, stale information
= Some major outages recently (and some
near-miss stories associated with them)

= TCAS saved the day: collision avoidance system of
last resort... and it works....

= Replace video terminals with workstations

= Build a highly available real-time system
guaranteeing no more than 3 seconds
downtime per year

= Offer much better user interface to ATC
controllers, with intelligent course
recommendations and warnings about future
course changes that will be needed

ATC Architecture

b

NS
o3

So... how to build it?

= In fact IBM project was just one of two at the
time; the French had one too
= IBM approach was based on lock-step replication

= Replace every major component of the system with a
fault-tolerant component set
= Replicate entire programs (“state machine” approach)

= French approach used replication selectively

= As needed, replicate specific data items.
= Program “hosts” a data replica but isn't itself replicated

IBM: Independent consoles... backed
by ultra-reliable components S

"""" 78

Radar processing

system is redundant

5
ATC
database

ATC database is really a
high-availability cluster

France: Multiple consoles... but in

e
»
Radar updates

sent with hardware
broadcasts

ATC
database

ATC database only
sees one connection

Different emphasis

= IBM imagined pipelines of processing with replication
used throughout. “Services” did much of the work.

& 6660 — N

= French imagined selectively replicated data, for
example “list of planes currently in sector A.17”
= E.g. controller interface programs could maintain replicas of
certain data structures or variables with system-wide value
= Programs did computing on their own helped by databases

= Both used standard off-the-shelf workstations
(easier to maintain, upgrade, manage)
= IBM proposed their own software for fault-
tolerance and consistent system implementation
= French used Isis software developed at Cornell
= Both developed fancy graphical user interface

much like the Web, pop-up menus for control
decisions, etc.

IBM Project Was a Fiasco!!

= IBM was unable to implement their fault-
tolerant software architecture! Problem was
much harder than they expected.
= Even a non-distributed interface turned out to be
very hard, major delays, scaled back goals
= And performance of the replication scheme turned
out to be terrible for reasons they didn’t anticipate
= The French project was a success and never
even missed a deadline... In use today.

= Their software “worked” correctly
= The replication mechanism wasn't flawed,
although it was much slower than expected
= But somehow it didn't fit into a comfortable
development methodology
= Developers need to find a good match between
their goals and the tools they use
= IBM never reached this point
= The French approach matched a more
standard way of developing applications

ATC problem lingers in USA...
= “Free flight” is the next step

Planes use GPS receivers to track own location
accurately

Combine radar and a shared database to see each
other

Each pilot makes own routing decisions
= ATC controllers only act in emergencies

= Already in limited use for long-distance flights

= Now each plane is like an ATC workstation
= Each pilot must make decisions consistent
with those of other pilots

= ... but if FAA’s project failed in 1994, why should
free flight succeed in 2010?

= Something is wrong with the distributed systems
infrastructure if we can’t build such things!
= In CS514, learn to look at technical choices
and steer away from high-risk options

= Web Services architecture should make it
much easier to build distributed systems
= Higher productivity because languages like Java

and C# and environments like J2EE and .NET offer
powerful help to developers

= The easy development route inspires many
kinds of projects, some rather “sensitive”

= But the “strong” requirements are an issue
= Web Services aren’'t aimed at such concerns

Examples of mission-critical

= Banking, stock markets, stock brokerages

= Heath care, hospital automation

= Control of power plants, electric grid

= Telecommunications infrastructure

= Electronic commerce and electronic cash on the Web
(very important emerging area)

= Corporate “information” base: a company’s memory
of decisions, technologies, strategy

= Military command, control, intelligence systems

We depend on distributed

= If these critical systems don’t work
= When we need them
= Correctly
= Fast enough
= Securely and privately
= ... then revenue, health and safety, and
national security may be at risk!

Critical Needs of Critical

= Fault-tolerance: many flavors
= Availability: System is continuously “up”
= Recoverability: Can restart failed components

= Consistency:

= Actions at different locations are consistent with each other.

= Sometimes use term “single system image”
= Automated self-management

= Security, privacy, etc....:
= Vital, but not our topic in this course

= ATC example illustrated a core issue

= Existing platforms
= Lack automated management features
= Handle errors in ad-hoc, inconsistent ways
= Offer one form of fault-tolerance mechanism

(transactions), and it isn't compatible with high
availability

= Developers often forced to step outside of the
box... and might stumble.

= But why don't platforms standardize such things?

ﬁ End-to-End argument

= Commonly cited as a justification for not
tackling reliability in “low levels” of a platform
= Originally posed in the Internet:
= Suppose an IP packet will take n hops to its
destination, and can be lost with probability p on
each hop
= Now, say that we want to transfer a file of k
records that each fit in one IP (or UDP) packet
= Should we use a retransmission protocol running
“end-to-end” or n TCP protocols in a chain?

Seoouw
Probability of successful transit: (1-p)",
Expected packetslost: k-k* (1-p)"

= If pisyvery small, then even with many hops
most packets will get through
= The overhead of using TCP protocols in the links
will slow things down and won't often benefit us
= And we’ll need an end-to-end recovery mechanism
“no matter what” since routers can fail, too.
= Conclusion: let the end-to-end mechanism
worry about reliability

= Low-level mechanisms should focus on
speed, not reliability

= The application should worry about
“properties” it needs

= OK to violate the E2E philosophy if E2E
mechanism would be much slower

ﬂ' E2E is visible in J2EE and .NET

= If something fails, these technologies
report timeouts

= But they also report timeouts when nothing
has failed

= And when they report timeouts, they don't
tell you what failed

= And they don't offer much help to fix
things up after the failure, either

= Suppose that our ATC needs a highly
available server.

= One option: “primary/backup”
= We run two servers on separate platforms
= The primary sends a log to the backup

= If primary crashes, the backup soon
catches up and can take over

. Split brain Syndrome...

Nead

K) primary

TR

@
e O

Clientsinitially connected to primary, which keeps
backup up to date. Backup collectsthelog

Split brain Syndrome...

Nl
O_ _________ 7) primary
e
=
O ’
7
”
- backup

Transient problem causes some links to break but not all.
Backup thinksit isnow primary, primary thinks backup is down

Split brain Syndrome

O
O @
&

Some clients still connected to primary, but one has switched
to backup and oneis completely disconnected from both

= Air Traffic System with a split brain
could malfunction disastrously!
= For example, suppose the service is used
to answer the question “is anyone flying in
such-and-such a sector of the sky”
= With the split-brain version, each half

might say “nope”... in response to different
queries!

ﬂ'\ aCan we fix this problem?

= No, if we insist on an end-to-end solution
= We'll look at this issue later in the class

= But the essential insight is that we need some
form of “agreement” on which machines are up
and which have crashed

= Can't implement “agreement” on a purely 1-to-1
(hence, end-to-end) basis.
= Separate decisions can always lead to inconsistency
= So we need a “membership service”... and this is
fundamentally not an end-to-end concept!

= Yes, many options, once we accept this
= Just use a single server and wait for it to restart
= This common today, but too slow for ATC
= Give backup a way to physically “kill” the primary,
e.g. unplug it
= If backup takes over... primary shuts down
= Or require some form of “majority vote”
= Ad mentioned, maintains agreement on system status
= Bottom line? You need to anticipate the
issue... and to implement a solution.

ﬁ CS514 project

= We'll work with Web Services
= .NET with ASP.NET in the language of your
preference (C# is our favorite)
= Or Java/J2EE
= We'll extend the platform with features like
replication for high availability, self-
management, etc
= And we’ll use this in support of a mission
critical application, mostly as a “demo”

= Either work alone at first. For third
assignment can form a team of 2 or 3
members

= Teams should tackle a more ambitious
problem and will also face some tough
coordination challenges

= Experience is like working in commercial
settings...

= In fact, probably no graded homework
or graded exams

= But we may assign thought problems to
help people master key ideas

= Grades will be based on the project
= Can be used as an MEng project if you like
= In this case, also sign up for CS790 credits

= Ken'’s textbook (came out in 2005 and
already seeming a tiny bit out of date!)
= He's planning to revise it eventually...
= ... but in distributed systems, everything is
always changing!
= Additional readings: Web page has
references and links

10

