
4/2/2007

1

BitTorrent

CS514
Vivek Vishnumurthy, TA

Common Scenario

• Millions want to download the same 
popular huge files (for free)
– ISO’s

Media (the real example!)– Media (the real example!)
• Client-server model fails

– Single server fails
– Can’t afford to deploy enough servers

IP Multicast?

• Recall: IP Multicast not a real option in 
general settings
– Not scalable
– Only used in private settingsy p g

• Alternatives
– End-host based Multicast
– BitTorrent
– Other P2P file-sharing schemes (later in 

lecture)
Router

“Interested” 
End-host

Source

Client-Server

Router

“Interested” 
End-host

Source

Client-Server
Overloaded!

Router

“Interested” 
End-host

Source



4/2/2007

2

IP multicast

Router

“Interested” 
End-host

Source

End-host based multicast

Router

“Interested” 
End-host

Source

End-host based multicast

• “Single-uploader” Î “Multiple-uploaders”
– Lots of nodes want to download
– Make use of their uploading abilities as well

Node that has downloaded (part of) file will– Node that has downloaded (part of) file will 
then upload it to other nodes.
¾Uploading costs amortized across all nodes

End-host based multicast

• Also called “Application-level Multicast”
• Many protocols proposed early this 

decade
Y id (2000) N d (2000) O t (2000)– Yoid (2000), Narada (2000), Overcast (2000), 
ALMI (2001)

• All use single trees
• Problem with single trees?

End-host multicast using single tree
Source

End-host multicast using single tree
Source



4/2/2007

3

End-host multicast using single tree
Source

Slow data transfer

End-host multicast using single tree

• Tree is “push-based” – node receives data, 
pushes data to children

• Failure of “interior”-node affects downloads in 
entire subtree rooted at node

• Slow interior node similarly affects entire subtree
• Also, leaf-nodes don’t do any sending!
• Though later multi-tree / multi-path protocols 

(Chunkyspread (2006), Chainsaw (2005), Bullet 
(2003)) mitigate some of these issues

BitTorrent

• Written by Bram Cohen (in Python) in 2001
• “Pull-based” “swarming” approach

– Each file split into smaller pieces
– Nodes request desired pieces from neighborsq p g

• As opposed to parents pushing data that they receive

– Pieces not downloaded in sequential order
– Previous multicast schemes aimed to support 

“streaming”; BitTorrent does not
• Encourages contribution by all nodes

BitTorrent Swarm

• Swarm
– Set of peers all downloading the same file
– Organized as a random mesh

E h d k li t f i• Each node knows list of pieces 
downloaded by neighbors

• Node requests pieces it does not own from 
neighbors
– Exact method explained later

How a node enters a swarm
for file “popeye.mp4”

• File popeye.mp4.torrent 
hosted at a (well-known) 
webserver

• The torrent has address• The .torrent has address 
of tracker for file

• The tracker, which runs 
on a webserver as well, 
keeps track of all peers 
downloading file

How a node enters a swarm
for file “popeye.mp4”

www.bittorrent.com

1

• File popeye.mp4.torrent 
hosted at a (well-known) 
webserver

• The torrent has addressPeer • The .torrent has address 
of tracker for file

• The tracker, which runs 
on a webserver as well, 
keeps track of all peers 
downloading file



4/2/2007

4

How a node enters a swarm
for file “popeye.mp4”

2

www.bittorrent.com

• File popeye.mp4.torrent 
hosted at a (well-known) 
webserver

• The torrent has addressPeer

Tracker

2 • The .torrent has address 
of tracker for file

• The tracker, which runs 
on a webserver as well, 
keeps track of all peers 
downloading file

How a node enters a swarm
for file “popeye.mp4”

www.bittorrent.com

• File popeye.mp4.torrent 
hosted at a (well-known) 
webserver

• The torrent has addressPeer

Tracker3

Swarm

• The .torrent has address 
of tracker for file

• The tracker, which runs 
on a webserver as well, 
keeps track of all peers 
downloading file

Contents of .torrent file

• URL of tracker
• Piece length – Usually 256 KB
• SHA-1 hashes of each piece in file

– For reliability
• “files” – allows download of multiple files

Terminology

• Seed: peer with the entire file
– Original Seed: The first seed

• Leech: peer that’s downloading the file
F i t i ht h b “d l d ”– Fairer term might have been “downloader”

• Sub-piece: Further subdivision of a piece
– The “unit for requests” is a subpiece
– But a peer uploads only after assembling 

complete piece

Peer-peer transactions:
Choosing pieces to request

• Rarest-first: Look at all pieces at all peers, 
and request piece that’s owned by fewest 
peers
– Increases diversity in the pieces downloadedy

• avoids case where a node and each of its peers 
have exactly the same pieces; increases 
throughput

– Increases likelihood all pieces still available 
even if original seed leaves before any one 
node has downloaded entire file

Choosing pieces to request

• Random First Piece:
– When peer starts to download, request 

random piece.
• So as to assemble first complete piece quicklySo as to assemble first complete piece quickly
• Then participate in uploads

– When first complete piece assembled, switch 
to rarest-first



4/2/2007

5

Choosing pieces to request

• End-game mode:
– When requests sent for all sub-pieces, 

(re)send requests to all peers.
– To speed up completion of downloadTo speed up completion of download
– Cancel request for downloaded sub-pieces

Tit-for-tat as incentive to upload

• Want to encourage all peers to contribute
• Peer A said to choke peer B if it (A) decides not 

to upload to B
• Each peer (say A) unchokes at most 4 interestedEach peer (say A) unchokes at most 4 interested

peers at any time
– The three with the largest upload rates to A

• Where the tit-for-tat comes in

– Another randomly chosen (Optimistic Unchoke)
• To periodically look for better choices

Anti-snubbing

• A peer is said to be snubbed if each of its 
peers chokes it

• To handle this, snubbed peer stops 
uploading to its peersuploading to its peers
¾Optimistic unchoking done more often

– Hope is that will discover a new peer that will 
upload to us

Why BitTorrent took off

• Better performance through “pull-based” 
transfer
– Slow nodes don’t bog down other nodes

• Allows uploading from hosts that haveAllows uploading from hosts that have 
downloaded parts of a file
– In common with other end-host based 

multicast schemes

Why BitTorrent took off

• Practical Reasons (perhaps more important!)
– Working implementation (Bram Cohen) with simple 

well-defined interfaces for plugging in new content
– Many recent competitors got sued / shut down

• Napster, Kazaa

– Doesn’t do “search” per se. Users use well-known, 
trusted sources to locate content

• Avoids the pollution problem, where garbage is passed off as 
authentic content

Pros and cons of BitTorrent

• Pros
– Proficient in utilizing partially downloaded files
– Discourages “freeloading”

• By rewarding fastest uploaders• By rewarding fastest uploaders
– Encourages diversity through “rarest-first”

• Extends lifetime of swarm

• Works well for “hot content”



4/2/2007

6

Pros and cons of BitTorrent

• Cons
– Assumes all interested peers active at same 

time; performance deteriorates if swarm 
“cools off”

– Even worse: no trackers for obscure content

Pros and cons of BitTorrent

• Dependence on centralized tracker: 
pro/con?
–/ Single point of failure: New nodes can’t 

enter swarm if tracker goes downenter swarm if tracker goes down
– Lack of a search feature

• ☺ Prevents pollution attacks
• / Users need to resort to out-of-band search: well 

known torrent-hosting sites / plain old web-search

“Trackerless” BitTorrent

• To be more precise, “BitTorrent without a 
centralized-tracker”

• E.g.: Azureus
• Uses a Distributed Hash Table (Kademlia DHT)Uses a Distributed Hash Table (Kademlia DHT)
• Tracker run by a normal end-host (not a web-

server anymore)
– The original seeder could itself be the tracker 
– Or have a node in the DHT randomly picked to act as 

the tracker

Why is (studying) BitTorrent 
important?

(From CacheLogic, 2004)

Why is (studying) BitTorrent 
important?

• BitTorrent consumes significant amount of 
internet traffic today
– In 2004, BitTorrent accounted for 30% of all 

internet traffic (Total P2P was 60%), 
di C h L iaccording to CacheLogic

– Slightly lower share in 2005 (possibly 
because of legal action), but still significant

– BT always used for legal software (linux iso) 
distribution too

– Recently: legal media downloads (Fox)

Other file-sharing systems

• Prominent earlier: Napster, Kazaa, 
Gnutella

• Current popular file-sharing client: eMule
C t t th d2k d K d t k– Connects to the ed2k and Kad networks

– ed2k has a supernode-ish architecture 
(distinction between servers and normal 
clients)

– Kad based on the Kademlia DHT



4/2/2007

7

File-sharing systems…

• (Anecdotally) Better than BitTorrent in 
finding obscure items

• Vulnerable to:
P ll ti tt k G b d t i t d ith– Pollution attacks: Garbage data inserted with 
the same file name; hard to distinguish

– Index-poisoning attacks (sneakier): Insert 
bogus entries pointing to non-existant files

– Kazaa reportedly has more than 50% 
pollution + poisoning

References

• BitTorrent
– “Incentives build robustness in BitTorrent”, 

Bram Cohen
– BitTorrent Protocol Specification:BitTorrent Protocol Specification: 

http://www.bittorrent.org/protocol.html
• Poisoning/Pollution in DHT’s:

– “Index Poisoning Attack in P2P file sharing 
systems”

– “Pollution in P2P File Sharing Systems”


