
1

ALMA MATER STUDIORUM – UNIVERSITA ’ DI BOLOGNAALMA MATER STUDIORUM – UNIVERSITA ’ DI BOLOGNA

Gossipping in
Bologna

Gossipping in
Bologna

Ozalp Babaoglu

Babaoglu 2Leiden Meeting

BackgroundBackground

• 2003: Márk Jelasity brings the gossipping gospel to
Bologna from Amsterdam

• 2003-2006: We get good milage from gossipping in the
context of Project BISON

• 2005-present: Continue to get milage in the context of
Project DELIS

Babaoglu 3Leiden Meeting

What have we done?What have we done?

• We have used gossipping to obtain fast, robust,
decentralized solutions for
• Aggregation

• Overlay topology management

• Heartbeat synchronization
• Cooperation in selfish environments

Babaoglu 4Leiden Meeting

CollaboratorsCollaborators

• Márk Jelasity
• Alberto Montresor
• Gianpaolo Jesi
• Toni Binci
• David Hales
• Stefano Arteconi

Babaoglu Leiden Meeting

Proactive gossip frameworkProactive gossip framework

// active thread
do forever

wait(T time units)
q = SelectPeer()
push S to q
pull Sq from q
S = Update(S,Sq)

// passive thread
do forever

(p,Sp) = pull * from *
push S to p
S = Update(S,Sp)

Babaoglu 6Leiden Meeting

Proactive gossip frameworkProactive gossip framework

• To instantiate the framework, need to define
• Local state S

• Method SelectPeer()
• Style of interaction

? push-pull

? push

? pull

• Method Update()

2

ALMA MATER STUDIORUM – UNIVERSITA ’ DI BOLOGNAALMA MATER STUDIORUM – UNIVERSITA ’ DI BOLOGNA

#1
Aggregation

#1
Aggregation

Babaoglu 8Leiden Meeting

Gossip framework instantiationGossip framework instantiation

•Style of interaction: push-pull
• Local state S: Current estimate of global aggregate
•Method SelectPeer(): Single random neighbor
•Method Update(): Numerical function defined according to

desired global aggregate (arithmetic/geometric mean, min,
max, etc.)

Babaoglu 9Leiden Meeting

Exponential convergence of averagingExponential convergence of averaging

Babaoglu 10Leiden Meeting

Properties of gossip-based aggregationProperties of gossip-based aggregation

• In gossip-based averaging, if the selected peer is a
globally random sample, then the variance of the set of
estimates decreases exponentially

• Convergence factor:

ρ = E(σ i+1
2)

E(σ i
2)

≈ 1
2 e

≈ 0.303

Babaoglu 11Leiden Meeting

Robustness of network size estimationRobustness of network size estimation

1000 nodes crash at the beginning of each cycle

Babaoglu 12Leiden Meeting

Robustness of network size estimationRobustness of network size estimation

20% of messages are lost

3

ALMA MATER STUDIORUM – UNIVERSITA ’ DI BOLOGNAALMA MATER STUDIORUM – UNIVERSITA ’ DI BOLOGNA

#2
Topology Management

#2
Topology Management

Babaoglu 14Leiden Meeting

Gossip framework instantiationGossip framework instantiation

•Style of interaction: push-pull
• Local state S: Current neighbor set
•Method SelectPeer(): Single random neighbor
•Method Update(): Ranking function defined according to

desired topology (ring, mesh, torus, DHT, etc.)

Babaoglu 15Leiden Meeting

Mesh ExampleMesh Example

Mesh.mov

Babaoglu 16Leiden Meeting

Sorting exampleSorting example

Sort-3.mov

Babaoglu 17Leiden Meeting

Exponential convergence - timeExponential convergence - time

Babaoglu Leiden Meeting

Exponential convergence - network sizeExponential convergence - network size

4

ALMA MATER STUDIORUM – UNIVERSITA ’ DI BOLOGNAALMA MATER STUDIORUM – UNIVERSITA ’ DI BOLOGNA

#3
Heartbeat Synchronization

#3
Heartbeat Synchronization

Babaoglu 20Leiden Meeting

Synchrony in natureSynchrony in nature

• Nature displays astonishing cases of synchrony among
independent actors
• Heart pacemaker cells

• Chirping crickets
• Menstrual cycle of women living together

• Flashing of fireflies

• Actors may belong to the same organism or they may be
parts of different organisms

Babaoglu 21Leiden Meeting

Coupled oscillatorsCoupled oscillators

• The “Coupled oscillator” model can be used to explain the
phenomenon of “self-synchronization”

• Each actor is an independent “oscillator”, like a pendulum
• Oscillators coupled through their environment

• Mechanical vibrations

• Air pressure
• Visual clues

• Olfactory signals

• They influence each other, causing minor local
adjustments that result in global synchrony

Babaoglu 22Leiden Meeting

FirefliesFireflies

• Certain species of (male) fireflies (e.g., luciola pupilla) are
known to synchronize their flashes despite:
• Small connectivity (each firefly has a small number of

“neighbors”)
• Communication not instantaneous

• Independent local “clocks” with random initial periods

Babaoglu 23Leiden Meeting

Gossip framework instantiationGossip framework instantiation

•Style of interaction: push
• Local state S: Current phase of local oscillator
•Method SelectPeer(): (small) set of random neighbors
•Method Update(): Function to reset the local oscillator

based on the phase of arriving flash

Babaoglu 24Leiden Meeting

Experimental resultsExperimental results

fireflies.mov

5

Babaoglu 25Leiden Meeting

Exponential convergenceExponential convergence

ALMA MATER STUDIORUM – UNIVERSITA ’ DI BOLOGNAALMA MATER STUDIORUM – UNIVERSITA ’ DI BOLOGNA

#4
Cooperation in Selfish

Environments

#4
Cooperation in Selfish

Environments

Babaoglu 27Leiden Meeting

OutlineOutline

• P2P networks are usually open systems
• Possibility to free-ride

• High levels of free-riding can seriously degrade global
performance

• A gossip-based algorithm can be used to sustain high
levels of cooperation despite selfish nodes

• Based on simple “copy” and “rewire ” operations

Babaoglu 28Leiden Meeting

Gossip framework instantiationGossip framework instantiation

•Style of interaction: pull
• Local state S: Current utility, strategy and neighborhood

within an interaction network
•Method SelectPeer(): Single random sample
•Method Update(): Copy strategy and neighborhood if the

peer is achieving better utility

Babaoglu 29Leiden Meeting

A

“Copy” strategy

SLAC Algorithm: “Copy and Rewire”SLAC Algorithm: “Copy and Rewire”

B

C
A

D

E F

H

J
K

G

Compare utilities

“Rewire”

Babaoglu 30Leiden Meeting

A

“Mutate” strategy

A

SLAC Algorithm: “Mutate”SLAC Algorithm: “Mutate”

B

C

D

E F

H

J
K

G

Drop current links

Link to random node

6

Babaoglu 31Leiden Meeting

Prisoner’s DilemmaPrisoner’s Dilemma

• Prisoner’s Dilemma in SLAC
• Nodes play PD with neighbors chosen randomly in the interaction

network
• Only pure strategies (always C or always D)

• Strategy mutation: flip current strategy
• Utility: average payoff achieved

Babaoglu 32Leiden Meeting

Cycle 180: Small defective clustersCycle 180: Small defective clusters

Babaoglu 33Leiden Meeting

Cycle 220: Cooperation emergesCycle 220: Cooperation emerges

Babaoglu 34Leiden Meeting

Cycle 230:
Cooperating cluster starts to break apart

Cycle 230:
Cooperating cluster starts to break apart

Babaoglu 35Leiden Meeting

Cycle 300: Defective nodes isolated, small
cooperative clusters formed

Cycle 300: Defective nodes isolated, small
cooperative clusters formed

Babaoglu 36Leiden Meeting

Phase transition of cooperationPhase transition of cooperation

%
 o

f c
oo

pe
ra

tin
g

no
de

s

7

Babaoglu 37Leiden Meeting

Broadcast ApplicationBroadcast Application

• How to communicate a piece of information from a single
node to all other nodes

• While:
• Minimizing the number of messages sent (MC)

• Maximizing the percentage of nodes that receive the message
(NR)

• Minimizing the elapsed time (TR)

Babaoglu 38Leiden Meeting

Broadcast ApplicationBroadcast Application

• Given a network with N nodes and L links
• A spanning tree has M C = N
• A flood-fill algorithm has M C = L

• For fixed networks containing reliable nodes, it is possible
to use an initial flood-fill to build a spanning tree from any
node

• Practical if broadcasting initiated by a few nodes only
• In P2P applications this is not practical due to network

dynamicity and the fact that all nodes may need to
broadcast

Babaoglu 39Leiden Meeting

The broadcast gameThe broadcast game

• Node initiates a broadcast by sending a message to each
neighbor

• Two different node behaviors determine what happens
when they receive a message for the first time:
• Pass: Forward the message to all neighbors

• Drop: Do nothing

• Utilities are updated as follows:
• Nodes that receive the message gain a benefit ß

• Nodes that pass the message incur a cost ?
• Assume ß > ? > 0, indicating nodes have an incentive to

receive messages but also an incentive to not forward them

Babaoglu 40Leiden Meeting

1000-node static random network1000-node static random network

Babaoglu 41Leiden Meeting

1000-node high churn network1000-node high churn network

Babaoglu 42Leiden Meeting

Fixed random networkFixed random network
Average over 500 broadcasts x 10 runs

8

Babaoglu 43Leiden Meeting

High churn networkHigh churn network
Average over 500 broadcasts x 10 runs

Babaoglu 44Leiden Meeting

Some food for thoughtSome food for thought

• What is it that makes a protocol “gossip based”?
• Cyclic execution structure (whether proactive or reactive)

• Bounded information exchange per peer, per cycle

• Bounded number of peers per cycle
• Random selection of peer(s)

Babaoglu 45Leiden Meeting

Some food for thoughtSome food for thought

• Bounded information exchange per peer, per round
implies
• Information condensation — aggregation

• Is aggregation the mother of all gossip protocols?

Babaoglu 46Leiden Meeting

Some food for thoughtSome food for thought

• Is exponential convergence a universal characterization of
all gossip protocols?

• No, depends on the properties of the peer selection step
• What are the minimum properties for peer selection that

are necessary to guarantee exponential convergence?

Babaoglu Leiden Meeting

Gossip versus evolutionary computing Gossip versus evolutionary computing

• What is the relationship between gossip and evolutionary
computing?

• Is one more powerful than the other? Are they equal?

