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BackgroundBackground

• 2003: Márk Jelasity brings the gossipping gospel to 
Bologna from Amsterdam

• 2003-2006: We get good milage from gossipping in the 
context of Project BISON

• 2005-present:  Continue to get milage in the context of 
Project DELIS
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What have we done?What have we done?

• We have used gossipping to obtain fast, robust, 
decentralized solutions for
• Aggregation

• Overlay topology management

• Heartbeat synchronization
• Cooperation in selfish environments
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CollaboratorsCollaborators

• Márk Jelasity
• Alberto Montresor
• Gianpaolo Jesi
• Toni Binci
• David Hales
• Stefano Arteconi
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Proactive gossip frameworkProactive gossip framework

// active thread
do forever

wait(T time units)
q = SelectPeer()
push S to q
pull Sq from q
S = Update(S,Sq)

// passive thread
do forever

(p,Sp) = pull * from *
push S to p
S = Update(S,Sp)
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Proactive gossip frameworkProactive gossip framework

• To instantiate the framework, need to define
• Local state S

• Method SelectPeer()
• Style of interaction

? push-pull

? push

? pull

• Method Update()
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#1
Aggregation

#1
Aggregation
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Gossip framework instantiationGossip framework instantiation

•Style of interaction:  push-pull
• Local state S:  Current estimate of global aggregate
•Method SelectPeer():  Single random neighbor
•Method Update():  Numerical function defined according to 

desired global aggregate (arithmetic/geometric mean, min, 
max, etc.)
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Exponential convergence of averagingExponential convergence of averaging
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Properties of gossip-based aggregationProperties of gossip-based aggregation

• In gossip-based averaging, if the selected peer is a 
globally random sample, then the variance of the set of 
estimates decreases exponentially

• Convergence factor:

ρ = E(σ i+1
2 )

E(σ i
2)

≈ 1
2 e

≈ 0.303
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Robustness of network size estimationRobustness of network size estimation

1000 nodes crash at the beginning of each cycle
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Robustness of network size estimationRobustness of network size estimation

20% of messages are lost
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#2
Topology Management

#2
Topology Management

Babaoglu 14Leiden Meeting

Gossip framework instantiationGossip framework instantiation

•Style of interaction:  push-pull
• Local state S:  Current neighbor set
•Method SelectPeer():  Single random neighbor
•Method Update():  Ranking function defined according to 

desired topology (ring, mesh, torus, DHT, etc.)

Babaoglu 15Leiden Meeting

Mesh ExampleMesh Example

Mesh.mov
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Sorting exampleSorting example

Sort-3.mov
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Exponential convergence - timeExponential convergence - time
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Exponential convergence - network sizeExponential convergence - network size
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#3
Heartbeat Synchronization

#3
Heartbeat Synchronization
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Synchrony in natureSynchrony in nature

• Nature displays astonishing cases of synchrony among 
independent actors
• Heart pacemaker cells

• Chirping crickets
• Menstrual cycle of women living together

• Flashing of fireflies

• Actors may belong to the same organism or they may be 
parts of different organisms
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Coupled oscillatorsCoupled oscillators

• The “Coupled oscillator” model can be used to explain the 
phenomenon of “self-synchronization”

• Each actor is an independent “oscillator”, like a pendulum
• Oscillators coupled through their environment 

• Mechanical vibrations

• Air pressure
• Visual clues

• Olfactory signals

• They influence each other, causing minor local 
adjustments that result in global synchrony
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FirefliesFireflies

• Certain species of (male) fireflies (e.g., luciola pupilla) are 
known to synchronize their flashes despite:
• Small connectivity (each firefly has a small number of 

“neighbors”)
• Communication not instantaneous

• Independent local “clocks” with random initial periods
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Gossip framework instantiationGossip framework instantiation

•Style of interaction:  push
• Local state S:  Current phase of local oscillator
•Method SelectPeer():  (small) set of random neighbors
•Method Update():  Function to reset the local oscillator 

based on the phase of arriving flash
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Experimental resultsExperimental results

fireflies.mov
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Exponential convergenceExponential convergence
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#4
Cooperation in Selfish 

Environments

#4
Cooperation in Selfish 

Environments
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OutlineOutline

• P2P networks are usually open systems
• Possibility to free-ride

• High levels of free-riding can seriously degrade global 
performance

• A gossip-based algorithm can be used to sustain high 
levels of cooperation despite selfish nodes

• Based on simple “copy” and “rewire ” operations
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Gossip framework instantiationGossip framework instantiation

•Style of interaction:  pull
• Local state S:  Current utility, strategy and neighborhood 

within an interaction network
•Method SelectPeer():  Single random sample
•Method Update():  Copy strategy and neighborhood if the 

peer is achieving better utility
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A

“Copy” strategy

SLAC Algorithm: “Copy and Rewire”SLAC Algorithm: “Copy and Rewire”
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A

“Mutate” strategy

A

SLAC Algorithm: “Mutate”SLAC Algorithm: “Mutate”
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Prisoner’s DilemmaPrisoner’s Dilemma

• Prisoner’s Dilemma in SLAC
• Nodes play PD with neighbors chosen randomly in the interaction 

network
• Only pure strategies (always C or always D)

• Strategy mutation: flip current strategy
• Utility: average payoff achieved
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Cycle 180: Small defective clustersCycle 180: Small defective clusters
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Cycle 220: Cooperation emergesCycle 220: Cooperation emerges
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Cycle 230:
Cooperating cluster starts to break apart

Cycle 230:
Cooperating cluster starts to break apart
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Cycle 300: Defective nodes isolated, small 
cooperative clusters formed

Cycle 300: Defective nodes isolated, small 
cooperative clusters formed
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Phase transition of cooperationPhase transition of cooperation
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Broadcast ApplicationBroadcast Application

• How to communicate a piece of information from a single 
node to all other nodes

• While:
• Minimizing the number of messages sent ( MC)

• Maximizing the percentage of nodes that receive the message 
(NR)

• Minimizing the elapsed time ( TR)
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Broadcast ApplicationBroadcast Application

• Given a network with N nodes and L links
• A spanning tree has M C = N
• A flood-fill algorithm has M C = L

• For fixed networks containing reliable nodes, it is possible 
to use an initial flood-fill to build a spanning tree from any 
node

• Practical if broadcasting initiated by a few nodes only
• In P2P applications this is not practical due to network 

dynamicity and the fact that all nodes may need to 
broadcast
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The broadcast gameThe broadcast game

• Node initiates a broadcast by sending a message to each 
neighbor

• Two different node behaviors determine what happens 
when they receive a message for the first time:
• Pass: Forward the message to all neighbors

• Drop: Do nothing

• Utilities are updated as follows:
• Nodes that receive the message gain a benefit ß

• Nodes that pass the message incur a cost ?
• Assume ß > ? > 0, indicating nodes have an incentive to 

receive messages but also an incentive to not forward them

Babaoglu 40Leiden Meeting

1000-node static random network1000-node static random network
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1000-node high churn network1000-node high churn network
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Fixed random networkFixed random network
Average over 500 broadcasts x 10 runs
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High churn networkHigh churn network
Average over 500 broadcasts x 10 runs
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Some food for thoughtSome food for thought

• What is it that makes a protocol “gossip based”?
• Cyclic execution structure (whether proactive or reactive)

• Bounded information exchange per peer, per cycle

• Bounded number of peers per cycle
• Random selection of peer(s)
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Some food for thoughtSome food for thought

• Bounded information exchange per peer, per round 
implies
• Information condensation — aggregation

• Is aggregation the mother of all gossip protocols?
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Some food for thoughtSome food for thought

• Is exponential convergence a universal characterization of 
all gossip protocols?

• No, depends on the properties of the peer selection step
• What are the minimum properties for peer selection that 

are necessary to guarantee exponential convergence?
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Gossip versus evolutionary computing Gossip versus evolutionary computing 

• What is the relationship between gossip and evolutionary 
computing?

• Is one more powerful than the other?  Are they equal? 


