
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Mobility is a huge topic

n Breaks existing applications
n Anything bandwidth intensive or synchronous

n Opportunities for new applications
n Location-specific (nearest Starbucks)

n Ubiquity (short messaging)
n Ad hoc networks

n Can’t possibly give it justice in one lecture

Focus on a couple systems-level attempts

n What can the system do to support
applications in mobile contexts, and how how
effective is it?

n Coda (mobile file system)
n CMU (AFS-based)

n Application awareness

n Rover (mobility systems toolkit)
n MIT

n Application transparent

Characteristics of mobility

User auth, encryptionWeakened security
(physical and radio)

Minimize transmissions
(and also processing)

Battery, battery, and
battery

Above, plus user controlExpensive ($$$) BW

Above, plus compression,
prioritization, clever use of
downlink

Variable and asymmetric
bandwidth

Caching, hoarding,
prefetching, DB/file
inconsistencies

Disconnection (long or short,
predictable or sudden)

Rover goals

n Philosophy is that applications know best how
to deal with mobility
n But there are general mechanisms that all

applications can benefit from

n Provide a toolkit to applications
n Make it easier to write applications that deal

with mobility issues
n Reduce client/server communications

requirements
n Allow the user to effectively work offline

(Some slides care of Michael Ferguson)

Rover project

n Build Rover toolkit
n Build range of applications using Rover

toolkit
n Email
n Calendar
n Browser

n Evaluate effectiveness of Rover for
supporting these applications

2

Conclusion: Success!

n Though Rover itself has not taken off…
n Applications easy to port

n They say…

n Performs well
n Compared to what?

n In my mind, they never really answer the
question whether a toolkit/OS approach is
better
n This would be a hard question to answer…

Two basic mechanisms

n Relocatable dynamic objects (RDO)
n Code/data shipping, like simple agents or process

migration

n Allows dynamic control over processing versus
communications tradeoff

n Queued remote procedure calls (QRPC)
n Asynchronous RPCs

n Allows offline operations without blocking

Rover operations

n Import objects onto client machine
n RDO: contains data and operations on the

data

n Invoke methods on those objects
n Export logs of method invocations to

servers
n Can also export RDOs

n Reconcile client data with server data

Rover operation

Import

Import call provides:
Object ID (URN)
Session ID
callback routing
arguments

Import call returns a “promise”
Call is queued (QRPC) for lazy

fetch

Import
When imported object arrives:

Callback routine is called
Object is put into the cache
RDO may invoke a thread

Object may be locked at server

3

Invoke
Application invokes methods on received object

Each operation is stored
Changes in object indicated by version vectors Export

Export call provides:
Object ID (URN)
Session ID
callback routing
arguments

Export call returns a “promise”
Updates to object are labeled tentatively
committed
The object operations are queued (QRPC)
Non-FIFO delivery enables prioritization

Export

The server executes the
operations, checks for conflicts

Applications provide a conflict
resolution routine

Export

Revolved operations are returned
to the client

After callback, client marks objects
as committed

Rover Architecture Rover Architecture

All applications run over a single
Rover process

Communicate via Local RPC
Allows prioritization across

applications

4

Rover Architecture

Network scheduler can select TCP
or SMTP (mail) for transport

Latter for batching lower priority
requests

(Interim solution)
Implementation

n RDOs are Tcl/tk objects
n Transported in HTTP

n Using CERN’s Web Common Library
n Server uses CGI scripts

Applications

n Mail reader (based on Exmh Tcl/Tk)
n Calendar (based on Ical Tcl/Tk

calendar)
n Web browser proxy (new application)

Mail Reader

n Parts of GUI and messages sent as
RDOs

n RDOs used for prefetching and
application-specific consistency
(inconsistent folder changes)

Calendar

n Each calendar item (appointment or
notice) is an RDO

n Item imported, changed tentatively,
and exported and committed

n Routines for conflict resolution
n Error notice, or give some users priority

Web browser proxy

n Implements “click ahead”
n During disconnection, clicks are queued for

later download
n User has access to list of queued clicks

n List is an RDO

n Does prefetching

5

Some thoughts on Rover

n Rover is a nice proof-of-concept for how to
deal with mobility

n But Rover itself of limited value
n Tcl/Tk based RDOs probably overtaken by Java
n Use of SMTP a bad choice (they know this)
n Probably hard to automatically prioritize among

disparate applications
n User would prefer to control this based on immediate

circumstances
n Not clear there is much value to running Rover as a

single, system service

Some thoughts on Rover

n Email not the best proof-of-concept
application
n Already fundamentally asynchronous, so not much

different with Rover

n Click-ahead sounds like a bad idea to me
n I’d rather control when clicks happen…

n Calendar is a decent proof-of-concept
application

Surprising conclusion

n From the Rover paper:
n “The largest, most important, drawback of the

Rover approach is that application designers must
think carefully about how application functions
should be divided between a client and a server”

n Funny…this struck me as probably the main
advantage of Rover!!!
n Provides a nice model for how to think about

disconnection, asynchrony, and consistency

Coda File System

n Unlike Rover, makes disconnection
issues transparent to the application
(and, to some extent, the user)
n Coda transparently propagates file

modifications and handles conflicts

Disconnected operation states
on client (Venus)

Hoarding

Emulating Reintegrating

Logical reconnection

Physical
reconnection

Disconnection

Change Modify Log (CML)

Cache

File Server

Fill cache using
hoard database

Read from cache.
Cache misses look
like errors.
Log changes to files.
Later changes can
override earlier changes.

Send changes to file server.
Detect conflicts, help user
recover

Conflict resolution

n Code resolves most directory conflicts
n For files, requires application-specific

resolvers
n Unresolvable files are presented to user

in a manual repair tool
n User sees an “explosion” of inconsistent

files in a directory tree
n Use diff and grep to resolve

6

Problem with disconnected
states approach

n Reintegration would consume bandwidth
resources…users couldn’t do anything useful
immediately upon reconnect

n Solutions:
n New states for weak connectivity
n Rapid cache validation (version stamps for

directories, not just files)
n Cached by clients

n “User patience threshold”…model to predict if a
user would rather wait for a large file not in the
cache, or be given an error

Weak connectivity operation
states on Venus

Hoarding

Emulating Write-
disconnected

Strong
connection

Connection

Disconnection

Reintegration
Barrier

Changes older than
some time (10 min)
cannot be over-ridden.
These are “trickled” out
to the file server during
weak connectivity.

Disconnection

Weak
connection

…

Isolation-Only Transactions

n Coda emulation of UNIX file system has
benefit of backwards compatibility

n UNIX lacks notion of read-write file conflicts
n Where an application is using a file as input, and

that file is modified
n Windows, on the other hand, locks the file

n This limitation is exacerbated by disconnected
operation

n Coda deals with this by checking for possible
read-write inconsistencies after reconnection

State machine for IOT

Pending validation

Test for serializability after
reconnection

Look for cycles in precedence
graph

Serializable if committed?
Serializable after all committed
transactions?
If not, use resolution strategy

Resolution Strategies

• Re-execute transaction with
current server files (I.e. make)
• Invoke application specific
resolver (I.e. calendar)
• Abort the transaction
• Notify the user

7

Some thoughts on Coda

n File system is the wrong level of abstraction
for many applications
n Calendar, database
n I agree with Rover on this

n As a user, I think Coda running “under the
hood” would be confusing, sometimes
annoying
n If file is shared, I’d rather deal with resolution

explicitly (version control, etc.)
n If file is not shared, I’d rather control when

“synchronization” takes place

Other interesting work

n Bayou (Xerox Parc)
n “Peer-to-peer” ad hoc network write conflict

resolution
n Group document editing, calendar, etc.

n Basic idea, “anti-entropy”: peers do pairwise
comparison of writes, try to revolve conflicts
n Determine conflict by trying the write on

neighbors version, conflict exists if result is
different

n Eventually all peers reach an agreed state

Other interesting work

n Broadcast disks
n Based on fact that radio reception much less

expensive than radio transmission
n Archarya et. al., SIGMOD95

n Continuous broadcast of “disks”, clients keep
the ones they want
n Broadcast index at set times so that clients know

when to receive

n Variations to support caching, consistency
n Broadcast version changes

