CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

= Breaks existing applications

= Anything bandwidth intensive or synchronous
= Opportunities for new applications

= Location-specific (nearest Starbucks)

= Ubiquity (short messaging)

= Ad hoc networks

= Can't possibly give it justice in one lecture

= What can the system do to support
applications in mobile contexts, and how how
effective is it?

= Coda (mobile file system)
= CMU (AFS-based)
= Application awareness
= Rover (mobility systems toolkit)
= MIT
= Application transparent

Disconnection (long or short, | Caching, hoarding,

predictable or sudden) prefetching, DB/file
inconsistencies

Variable and asymmetric Above, plus compression,

bandwidth prioritization, clever use of
downlink

Expensive ($$$) BW Above, plus user control

Battery, battery, and Minimize transmissions

battery (and also processing)

Weakened security User auth, encryption

(physical and radio)

! Rover goals

= Philosophy is that applications know best how
to deal with mobility

= But there are general mechanisms that all
applications can benefit from

= Provide a toolkit to applications
= Make it easier to write applications that deal
with mobility issues

= Reduce client/server communications
requirements

= Allow the user to effectively work offline

(Some slides care of Michael Ferguson)

= Build Rover toolkit

= Build range of applications using Rover
toolkit
= Email
= Calendar
= Browser

= Evaluate effectiveness of Rover for
supporting these applications

Conclusion: Success!

Though Rover itself has not taken off...
Applications easy to port

= They say...

= Performs well

= Compared to what?

In my mind, they never really answer the
question whether a toolkit/OS approach is
better

= This would be a hard question to answer...

= Relocatable dynamic objects (RDO)

= Code/data shipping, like simple agents or process
migration

= Allows dynamic control over processing versus
communications tradeoff

= Queued remote procedure calls (QRPC)
= Asynchronous RPCs
= Allows offline operations without blocking

Rover operations

Import objects onto client machine

= RDO: contains data and operations on the
data

= Invoke methods on those objects

Export logs of method invocations to
servers

= Can also export RDOs
= Reconcile client data with server data

Server—side
Application

Modify Resolve

Object Conflict?

Rover Library
Rover Library Rover Library

Import RDO

‘_'_____o——'__'_‘—‘—n__*
"' Ll Export aperstion log.
QrecLoy ™ e |
Resolhed operution log
Mobile Host R Server

Client-ide Client-side Modify/Resolve P
Application Application onflict

Rover Library

Rover Library Hover Library

Y i
Objoct cache ; kDo ——
QRPCLog ™
lved log

" —
Mobile Host Server

Import

Client-side Clieni-side.
Application Application {

Server—side
Application

Modify/Resolve

/

Rover Library

Rover Library

Y
Objectcache -{—— o koo f—"
* b Export aperation log.
QRCLeg W™ L——
Resolied aperation log
—

Mobhile Host Server

Serverside
pplication

Clientside Cli Modi
Application A Object
)) Rover Libvary
Rover Library ilrary
Import RDO
f v - ——
Objectesche W o [T 0 e
Scbeduler P
xport aperstion log
(RPCLog ~ [™™
log
e —
Mo Server

it-side

Cli Clieni-side.
Application

Application

Hover Library Rover Library
L i
Objectenche]
! A et y)
QRPCLog ™™ =
Resolved apenuion log
Mobile Host Server

Export

Client—side
Application

Client-side
Applicaion

Rover Library Rover Library

Objectcache ‘{, Netwack
Scbeduler
QRPCLog ™
Mobile Host

Serverside
Application

Modify/Resolve

Import RDO

Export

Server-side
Application
Client—side Client-side Moify/Resolve G
Application Application o
Rover Library

hover Library Rover Library

D0
Objectcache .{, Netwark koo fa—
: Seboler ort operation log
ORPCLog ™
Rolied operstion log
Mobile Host Server

Rover Architecture

Mobile host

1
Ibowser § 1 query
| "

Server

Cor e Dor—on

Rover Arch

Mobile host

Application

BudFetch/Flush

HTTPSMTF/TCP
Transport

HTTP/SMTP/TCP
Transport

Network scheduler can select TCP
or SMTP (mail) for transport

Latter for batching lower priority
requests

(Interim solution)

Rover Arch

Mobile host

= RDOs are Tcl/tk objects

= Transported in HTTP
= Using CERN’s Web Common Library
= Server uses CGI scripts

= Mail reader (based on Exmh Tcl/TK)

= Calendar (based on Ical Tcl/Tk
calendar)

= Web browser proxy (new application)

= Parts of GUI and messages sent as
RDOs

= RDOs used for prefetching and
application-specific consistency
(inconsistent folder changes)

= Each calendar item (appointment or
notice) is an RDO

= Item imported, changed tentatively,
and exported and committed

= Routines for conflict resolution
= Error notice, or give some users priority

= Implements “click ahead”

= During disconnection, clicks are queued for
later download

= User has access to list of queued clicks
= List is an RDO

= Does prefetching

! Some thoughts on Rover

= Rover is a nice proof-of-concept for how to
deal with mobility

= But Rover itself of limited value
= Tcl/Tk based RDOs probably overtaken by Java
= Use of SMTP a bad choice (they know this)
= Probably hard to automatically prioritize among
disparate applications
= User would prefer to control this based on immediate
circumstances
= Not clear there is much value to running Rover as a
single, system service

= Email not the best proof-of-concept
application
= Already fundamentally asynchronous, so not much
different with Rover

= Click-ahead sounds like a bad idea to me
= I'd rather control when clicks happen...

= Calendar is a decent proof-of-concept
application

= From the Rover paper:
= “The largest, most important, drawback of the
Rover approach is that application designers must
think carefully about how application functions
should be divided between a client and a server”

= Funny...this struck me as probably the main
advantage of Rover!!!
= Provides a nice model for how to think about
disconnection, asynchrony, and consistency

= Unlike Rover, makes disconnection
issues transparent to the application
(and, to some extent, the user)
= Coda transparently propagates file
modifications and handles conflicts

Disconnected operation states

! on client (Venus)

Fillcache using
hoard database

RISALS "
Cache | A

’ Disconnectiy/
". Physical

Logical reconnection

RN reconnection)) File Server
Reintegrating, ~
.
Read from cache. o’
. . X
Cachemisseslook Voot

like errors. ' ACTEICIEE
Log changes to files.
Later changes can
override earlier changes.

Change Modify Log (CML) Detect conflicts, help user
recover

s
Send changes to file server.

= Code resolves most directory conflicts

= For files, requires application-specific
resolvers

= Unresolvable files are presented to user
in a manual repair tool

= User sees an “explosion” of inconsistent
files in a directory tree

= Use diff and grep to resolve

Problem with disconnected
states approach

= Reintegration would consume bandwidth
resources...users couldn’t do anything useful
immediately upon reconnect
= Solutions:
= New states for weak connectivity
= Rapid cache validation (version stamps for
directories, not just files)
= Cached by clients
= “User patience threshold”...model to predict if a
user would rather wait for a large file not in the
cache, or be given an error

Weak connectivity operation
states on Venus

Strong Changes older than
Disconnectiol Weak \ \ connection some time (10 mln)
connectio cannot be over-ridden.

These are “trickled” out

Connection to the file server during
weak connectivity.
Disconnection

Reintegration
Barrier

Isolation-Only Transactions

= Coda emulation of UNIX file system has
benefit of backwards compatibility

= UNIX lacks notion of read-write file conflicts

= Where an application is using a file as input, and
that file is modified

= Windows, on the other hand, locks the file
= This limitation is exacerbated by disconnected
operation
= Coda deals with this by checking for possible
read-write inconsistencies after reconnection

State machine for 10T

second class transaction

e patione validation fail
pending

without partitioned validation succeed
file avcesses & reintegration

automatic
or manual
resolution

user
invocation

Jirst class
Iransaction

Pending validation

second class transaction

with partitioned
file accesses

validation fail
pending

validation succeed automatic
& reintegration or manual
resolution

Resolution Strategies

second class transaction

with partitioned
file accesses

validation fail

automatic
or manual
resolution

_2 Some thoughts on Coda

= File system is the wrong level of abstraction
for many applications
= Calendar, database
= | agree with Rover on this

= As a user, | think Coda running “under the
hood” would be confusing, sometimes
annoying
= If file is shared, I'd rather deal with resolution

explicitly (version control, etc.)

= If file is not shared, I'd rather control when
“synchronization” takes place

Bayou (Xerox Parc)

“Peer-to-peer” ad hoc network write conflict
resolution

= Group document editing, calendar, etc.
Basic idea, “anti-entropy”: peers do pairwise
comparison of writes, try to revolve conflicts

= Determine conflict by trying the write on
neighbors version, conflict exists if result is
different

= Eventually all peers reach an agreed state

= Broadcast disks

= Based on fact that radio reception much less
expensive than radio transmission
= Archaryaet. al., SIGMOD95

= Continuous broadcast of “disks”, clients keep
the ones they want

= Broadcast index at set times so that clients know
when to receive

= Variations to support caching, consistency
= Broadcast version changes

