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CS514: Intermediate Course 
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Scalability

Today we’ll focus on how things scale
Basically: look at a property that matters
Make something “bigger”

Like the network, the number of groups, the 
number of members, the data rate

Then measure the property and see impact

Often we can “hope” that no slowdown 
would occur. But what really happens?

Stock Exchange Problem:  
Sometimes, someone is slow…

Most members are 
healthy….

… but one is slow

i.e. something is contending with the red process,
delaying its handling of incoming messages…

With a slow receiver, throughput 
collapses as the system scales up
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Why does this happen?

Superficially, because data for the slow 
process piles up in the sender’s buffer, 
causing flow control to kick in 
(prematurely)
But why does the problem grow worse as 
a function of group size, with just one 
“red” process?

Small perturbations happen all the time

Broad picture?

Virtual synchrony works well under bursty
loads
And it scales to fairly large systems (SWX 
uses a hierarchy to reach ~500 users)

From what we’ve seen so far, this is about as 
good as it gets for reliability
Recall that stronger reliability models like Paxos
are costly and scale far worse

Desired: steady throughput under heavy load 
and stress
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Protocols famous for 
scalability

Scalable reliable multicast (SRM)
Reliable Multicast Transport Protocol (RMTP)
On-Tree Efficient Recovery using Subcasting
(OTERS)

Several others: TMP, MFTP, MFTP/EC...

But when stability is tested under stress, every 
one of these protocols collapses just like virtual 
synchrony!

Example: Scalable Reliable 
Multicast (SRM)

Originated in work on Wb and Mbone
Idea is to do “local repair” if messages 
are lost, various optimizations keep load 
low and repair costs localized
Wildly popular for internet “push,” seen 
as solution for Internet radio and TV
But receiver-driven reliability model 
lacks “strong” reliability guarantees

Local Repair Concept Local Repair Concept

Local Repair Concept

lost

Local Repair Concept

NACK NACK

NACKX

Receipt of subsequent 
packet triggers NACK 

for missing packet
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Limitations?

SRM runs in application, not router, hence IP 
multicast of nack’s and retransmissions tend 
to reach many or all processes
Lacking knowledge of who should receive 
each message, SRM has no simple way to 
know when a message can be garbage 
collected at the application layer
Probabilistic rules to suppress duplicates

In practice?

As the system grows large the 
“probabilistic suppression” fails

More and more NAKs are sent in duplicate
And more and more duplicate data 
message are sent as multiple receivers 
respond to the same NAK

Why does this happen?



4

Visualizing how SRM collapses
Think of sender as the hub of a wheel

Messages depart in all directions
Loss can occur at many places “out there” and they could be 
far apart…

Hence NAK suppression won’t work
Causing multiple NAKS

And the same reasoning explains why any one NAK is likely 
to trigger multiple retransmissions!

Experiments have confirmed that SRM overheads 
soar with deployment size

Every message triggers many NAKs and many 
retransmissions until the network finally melts down

Dilemma confronting 
developers

Application is extremely critical: stock 
market, air traffic control, medical 
system
Hence need a strong model, guarantees
But these applications often have a 
soft-realtime subsystem

Steady data generation
May need to deliver over a large scale

Today introduce a new design pt.

Bimodal multicast (pbcast) is reliable in a sense 
that can be formalized, at least for some 
networks

Generalization for larger class of networks should be 
possible but maybe not easy

Protocol is also very stable under steady load 
even if 25% of processes are perturbed
Scalable in much the same way as SRM

Environment

Will assume that most links have known 
throughput and loss properties
Also assume that most processes are 
responsive to messages in bounded 
time
But can tolerate some flakey links and 
some crashed or slow processes.

Start by using unreliable multicast to rapidly 
distribute the message. But some messages 
may not get through, and some processes may 
be faulty.  So initial state involves partial 
distribution of multicast(s)

Periodically (e.g. every 100ms) each process 
sends a digest describing its state to some 
randomly selected group member.  The digest 
identifies messages.  It doesn’t include them.
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Recipient checks the gossip digest against its 
own history and solicits a copy of any missing 
message from the process that sent the gossip

Processes respond to solicitations received 
during a round of gossip by retransmitting the 
requested message.  The round lasts much longer 
than a typical RPC time.

Delivery?  Garbage Collection?

Deliver a message when it is in FIFO order
Garbage collect a message when you believe 
that no “healthy” process could still need a 
copy (we used to wait 10 rounds, but now 
are using gossip to detect this condition)
Match parameters to intended environment

Need to bound costs

Worries:
Someone could fall behind and never catch 
up, endlessly loading everyone else
What if some process has lots of stuff 
others want and they bombard him with 
requests?
What about scalability in buffering and in 
list of members of the system, or costs of 
updating that list?

Optimizations

Request retransmissions most recent 
multicast first
Idea is to “catch up quickly” leaving at 
most one gap in the retrieved sequence

Optimizations

Participants bound the amount of data 
they will retransmit during any given 
round of gossip.  If too much is solicited 
they ignore the excess requests
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Optimizations

Label each gossip message with 
senders gossip round number
Ignore solicitations that have expired 
round number, reasoning that they 
arrived very late hence are probably no 
longer correct

Optimizations

Don’t retransmit same message twice in 
a row to any given destination (the 
copy may still be in transit hence 
request may be redundant)

Optimizations

Use IP multicast when retransmitting a 
message if several processes lack a copy

For example, if solicited twice
Also, if a retransmission is received from “far 
away”
Tradeoff: excess messages versus low latency

Use regional TTL to restrict multicast scope

Scalability

Protocol is scalable except for its use of 
the membership of the full process 
group
Updates could be costly
Size of list could be costly
In large groups, would also prefer not 
to gossip over long high-latency links

Can extend pbcast to solve both

Could use IP multicast to send initial 
message.  (Right now, we have a tree-
structured alternative, but to use it, 
need to know the membership)
Tell each process only about some 
subset k of the processes, k << N
Keeps costs constant.  

Router overload problem

Random gossip can overload a central 
router
Yet information flowing through this 
router is of diminishing quality as rate 
of gossip rises
Insight: constant rate of gossip is 
achievable and adequate
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Hierarchical Gossip

Weight gossip so that probability of 
gossip to a remote cluster is smaller
Can adjust weight to have constant load 
on router
Now propagation delays rise… but just 
increase rate of gossip to compensate
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Remainder of talk

Show results of formal analysis
We developed a model (won’t do the math 
here -- nothing very fancy)
Used model to solve for expected reliability

Then show more experimental data
Real question: what would pbcast “do”
in the Internet?  Our experience: it 
works!

Idea behind analysis

Can use the mathematics of epidemic 
theory to predict reliability of the 
protocol
Assume an initial state
Now look at result of running B rounds 
of gossip: converges exponentially 
quickly towards atomic delivery

Pbcast bimodal delivery distribution
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Failure analysis

Suppose someone tells me what they 
hope to “avoid”
Model as a predicate on final system 
state
Can compute the probability that pbcast
would terminate in that state, again 
from the model

Two predicates

Predicate I: A faulty outcome is one 
where more than 10% but less than 
90% of the processes get the multicast 

… Think of a probabilistic Byzantine 
General’s problem: a disaster if many 
but not most troops attack

Two predicates

Predicate II: A faulty outcome is one where 
roughly half get the multicast and failures 
might “conceal” true outcome 

… this would make sense if using pbcast to 
distribute quorum-style updates to replicated 
data.  The costly hence undesired outcome is 
the one where we need to rollback because 
outcome is “uncertain”

Two predicates

Predicate I: More than 10% but less than 
90% of the processes get the multicast 
Predicate II: Roughly half get the multicast 
but crash failures might “conceal” outcome
Easy to add your own predicate.  Our 
methodology supports any predicate over 
final system state

Scalability  of  Pbcast reliability
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Fanout required for a specif ied reliability
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Figure 5: Graphs of analytical results

Discussion

We see that pbcast is indeed bimodal 
even in worst case, when initial 
multicast fails
Can easily tune parameters to obtain 
desired guarantees of reliability
Protocol is suitable for use in 
applications where bounded risk of 
undesired outcome is sufficient

Model makes assumptions...

These are rather simplistic
Yet the model seems to predict behavior in 
real networks, anyhow
In effect, the protocol is not merely robust to 
process perturbation and message loss, but 
also to perturbation of the model itself
Speculate that this is due to the incredible 
power of exponential convergence...

Experimental work

SP2 is a large network
Nodes are basically UNIX workstations
Interconnect is basically an ATM network
Software is standard Internet stack (TCP, UDP)

We obtained access to as many as 128 nodes 
on Cornell SP2 in Theory Center
Ran pbcast on this, and also ran a second 
implementation on a real network

Example of a question

Create a group of 8 members
Perturb one member in style of Figure 1
Now look at “stability” of throughput

Measure rate of received messages during 
periods of 100ms each
Plot histogram over life of experiment
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Histogram of throughput for Ensemble's FIFO 
Virtual Synchrony Protocol
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Notice that in 
practice, bimodal 
multicast is fast!

Now revisit Figure 1 in detail

Take 8 machines
Perturb 1
Pump data in at varying rates, look at 
rate of received messages
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Revisit our original scenario with 
perturbations (32 processes)
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Impact of packet loss on 
reliability and retransmission rate
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Notice that when network becomes 
overloaded, healthy processes 
experience packet loss!

What about growth of 
overhead?

Look at messages other than original 
data distribution multicast
Measure worst case scenario: costs at 
main generator of multicasts
Side remark: all of these graphs look 
identical with multiple senders or if 
overhead is measured elsewhere….
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64 nodes - 16 perturbed processes
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16 nodes - 4 perturbed processes
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Clearly, overhead does grow
We know it will be bounded except for 
probabilistic phenomena
At peak, load is still fairly low

Pbcast versus SRM, 0.1% 
packet loss rate on all links
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Pbcast versus SRM: 300 members on a 
1000-node tree, 0.1% packet loss rate
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Pbcast versus SRM: Interarrival spacing (500 
nodes, 300 members, 1.0% packet loss)
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Real Data: Spinglass on a 10Mbit 
ethernet (35 Ultrasparc’s)
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Requests/repairs and latencies 
with bounded router bandwidth
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Discussion
Saw that stability of protocol is exceptional 
even under heavy perturbation
Overhead is low and stays low with system 
size, bounded even for heavy perturbation
Throughput is extremely steady
In contrast, virtual synchrony and SRM both 
are fragile under this sort of attack
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Programming with pbcast?

Most often would want to split 
application into multiple subsystems

Use pbcast for subsystems that generate 
regular flow of data and can tolerate 
infrequent loss if risk is bounded
Use stronger properties for subsystems 
with less load and that need high 
availability and consistency at all times

Programming with pbcast?

In stock exchange, use pbcast for pricing but 
abcast for “control” operations
In hospital use pbcast for telemetry data but 
use abcast when changing medication
In air traffic system use pbcast for routine 
radar track updates but abcast when pilot 
registers a flight plan change

Our vision: One protocol side-
by-side with the other

Use virtual synchrony for replicated 
data and control actions, where strong 
guarantees are needed for safety
Use pbcast for high data rates, steady 
flows of information, where longer term 
properties are critical but individual 
multicast is of less critical importance

Summary

New data point in a familiar spectrum
Virtual synchrony
Bimodal probabilistic multicast
Scalable reliable multicast

Demonstrated that pbcast is suitable for 
analytic work
Saw that it has exceptional stability


