
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Scalability

Today we’ll focus on how things scale
Basically: look at a property that matters
Make something “bigger”

Like the network, the number of groups, the
number of members, the data rate

Then measure the property and see impact

Often we can “hope” that no slowdown
would occur. But what really happens?

Stock Exchange Problem:
Sometimes, someone is slow…

Most members are
healthy….

… but one is slow

i.e. something is contending with the red process,
delaying its handling of incoming messages…

With a slow receiver, throughput
collapses as the system scales up

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250
Virtually synchronous Ensemble multicast protocols

perturb rate

av
er

ag
e

th
ro

ug
hp

ut
 o

n
no

np
er

tu
rb

ed
m

em
be

rs group size: 32
group size: 64
group size: 96

32

96

Why does this happen?

Superficially, because data for the slow
process piles up in the sender’s buffer,
causing flow control to kick in
(prematurely)
But why does the problem grow worse as
a function of group size, with just one
“red” process?

Small perturbations happen all the time

Broad picture?

Virtual synchrony works well under bursty
loads
And it scales to fairly large systems (SWX
uses a hierarchy to reach ~500 users)

From what we’ve seen so far, this is about as
good as it gets for reliability
Recall that stronger reliability models like Paxos
are costly and scale far worse

Desired: steady throughput under heavy load
and stress

2

Protocols famous for
scalability

Scalable reliable multicast (SRM)
Reliable Multicast Transport Protocol (RMTP)
On-Tree Efficient Recovery using Subcasting
(OTERS)

Several others: TMP, MFTP, MFTP/EC...

But when stability is tested under stress, every
one of these protocols collapses just like virtual
synchrony!

Example: Scalable Reliable
Multicast (SRM)

Originated in work on Wb and Mbone
Idea is to do “local repair” if messages
are lost, various optimizations keep load
low and repair costs localized
Wildly popular for internet “push,” seen
as solution for Internet radio and TV
But receiver-driven reliability model
lacks “strong” reliability guarantees

Local Repair Concept Local Repair Concept

Local Repair Concept

lost

Local Repair Concept

NACK NACK

NACKX

Receipt of subsequent
packet triggers NACK

for missing packet

3

Local Repair Concept

NACK

NACK

X

X

X

NACK

Receive useless NAK,
duplicate repair

Retransmit

Local Repair Concept

X

X

X
X

X

X

NACK

NACK

Receive useless NAK,
duplicate repair

X

Local Repair Concept

NACK

X

X

X

X

NACK

NACK

Receive useless NAK,
duplicate repair

Local Repair Concept

X

X

X

Receive useless NAK,
duplicate repair

Limitations?

SRM runs in application, not router, hence IP
multicast of nack’s and retransmissions tend
to reach many or all processes
Lacking knowledge of who should receive
each message, SRM has no simple way to
know when a message can be garbage
collected at the application layer
Probabilistic rules to suppress duplicates

In practice?

As the system grows large the
“probabilistic suppression” fails

More and more NAKs are sent in duplicate
And more and more duplicate data
message are sent as multiple receivers
respond to the same NAK

Why does this happen?

4

Visualizing how SRM collapses
Think of sender as the hub of a wheel

Messages depart in all directions
Loss can occur at many places “out there” and they could be
far apart…

Hence NAK suppression won’t work
Causing multiple NAKS

And the same reasoning explains why any one NAK is likely
to trigger multiple retransmissions!

Experiments have confirmed that SRM overheads
soar with deployment size

Every message triggers many NAKs and many
retransmissions until the network finally melts down

Dilemma confronting
developers

Application is extremely critical: stock
market, air traffic control, medical
system
Hence need a strong model, guarantees
But these applications often have a
soft-realtime subsystem

Steady data generation
May need to deliver over a large scale

Today introduce a new design pt.

Bimodal multicast (pbcast) is reliable in a sense
that can be formalized, at least for some
networks

Generalization for larger class of networks should be
possible but maybe not easy

Protocol is also very stable under steady load
even if 25% of processes are perturbed
Scalable in much the same way as SRM

Environment

Will assume that most links have known
throughput and loss properties
Also assume that most processes are
responsive to messages in bounded
time
But can tolerate some flakey links and
some crashed or slow processes.

Start by using unreliable multicast to rapidly
distribute the message. But some messages
may not get through, and some processes may
be faulty. So initial state involves partial
distribution of multicast(s)

Periodically (e.g. every 100ms) each process
sends a digest describing its state to some
randomly selected group member. The digest
identifies messages. It doesn’t include them.

5

Recipient checks the gossip digest against its
own history and solicits a copy of any missing
message from the process that sent the gossip

Processes respond to solicitations received
during a round of gossip by retransmitting the
requested message. The round lasts much longer
than a typical RPC time.

Delivery? Garbage Collection?

Deliver a message when it is in FIFO order
Garbage collect a message when you believe
that no “healthy” process could still need a
copy (we used to wait 10 rounds, but now
are using gossip to detect this condition)
Match parameters to intended environment

Need to bound costs

Worries:
Someone could fall behind and never catch
up, endlessly loading everyone else
What if some process has lots of stuff
others want and they bombard him with
requests?
What about scalability in buffering and in
list of members of the system, or costs of
updating that list?

Optimizations

Request retransmissions most recent
multicast first
Idea is to “catch up quickly” leaving at
most one gap in the retrieved sequence

Optimizations

Participants bound the amount of data
they will retransmit during any given
round of gossip. If too much is solicited
they ignore the excess requests

6

Optimizations

Label each gossip message with
senders gossip round number
Ignore solicitations that have expired
round number, reasoning that they
arrived very late hence are probably no
longer correct

Optimizations

Don’t retransmit same message twice in
a row to any given destination (the
copy may still be in transit hence
request may be redundant)

Optimizations

Use IP multicast when retransmitting a
message if several processes lack a copy

For example, if solicited twice
Also, if a retransmission is received from “far
away”
Tradeoff: excess messages versus low latency

Use regional TTL to restrict multicast scope

Scalability

Protocol is scalable except for its use of
the membership of the full process
group
Updates could be costly
Size of list could be costly
In large groups, would also prefer not
to gossip over long high-latency links

Can extend pbcast to solve both

Could use IP multicast to send initial
message. (Right now, we have a tree-
structured alternative, but to use it,
need to know the membership)
Tell each process only about some
subset k of the processes, k << N
Keeps costs constant.

Router overload problem

Random gossip can overload a central
router
Yet information flowing through this
router is of diminishing quality as rate
of gossip rises
Insight: constant rate of gossip is
achievable and adequate

7

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

sec

nm
sg

s/
se

c

Uniform
Hierarchical

0 5 10 15 20 25 30
0

50

100

150

group size

nm
sg

s/
se

c

Uniform
Hierarchical

Sender

Receiver

High noise rate

Sender

Receiver

Limited
bandwidth
(1500Kbits)

Bandwidth of
other
links:10Mbits

Lo
ad

 o
n

W
AN

 li
nk

 (
m

sg
s/

se
c)

La
te

nc
y

to
 d

el
iv

er
y

(m
s)

Hierarchical Gossip

Weight gossip so that probability of
gossip to a remote cluster is smaller
Can adjust weight to have constant load
on router
Now propagation delays rise… but just
increase rate of gossip to compensate

0 5 10 15 20 25 30
0

500

1000

1500

group size

pr
op

ag
at

io
n

tim
e(

m
s)

Uniform
Hierarchical
Fast hierarchical

0 5 10 15 20 25 30
0

50

100

150

group size

nm
sg

s/
se

c

Uniform
Hierarchical
Fast hierarchical

Remainder of talk

Show results of formal analysis
We developed a model (won’t do the math
here -- nothing very fancy)
Used model to solve for expected reliability

Then show more experimental data
Real question: what would pbcast “do”
in the Internet? Our experience: it
works!

Idea behind analysis

Can use the mathematics of epidemic
theory to predict reliability of the
protocol
Assume an initial state
Now look at result of running B rounds
of gossip: converges exponentially
quickly towards atomic delivery

Pbcast bimodal delivery distribution

1.E- 30

1.E- 25

1.E- 20

1.E- 15

1.E- 10

1.E- 05

1.E+00

0 5 10 15 20 25 30 35 40 45 50

number of processes to deliver pbcast

p{
#p

ro
ce

ss
es

=k
}

Either sender
fails…

… or data gets
through w.h.p.

8

Failure analysis

Suppose someone tells me what they
hope to “avoid”
Model as a predicate on final system
state
Can compute the probability that pbcast
would terminate in that state, again
from the model

Two predicates

Predicate I: A faulty outcome is one
where more than 10% but less than
90% of the processes get the multicast

… Think of a probabilistic Byzantine
General’s problem: a disaster if many
but not most troops attack

Two predicates

Predicate II: A faulty outcome is one where
roughly half get the multicast and failures
might “conceal” true outcome

… this would make sense if using pbcast to
distribute quorum-style updates to replicated
data. The costly hence undesired outcome is
the one where we need to rollback because
outcome is “uncertain”

Two predicates

Predicate I: More than 10% but less than
90% of the processes get the multicast
Predicate II: Roughly half get the multicast
but crash failures might “conceal” outcome
Easy to add your own predicate. Our
methodology supports any predicate over
final system state

Scalability of Pbcast reliability

1.E- 35

1.E- 30

1.E- 25
1.E- 20

1.E- 15

1.E- 10

1.E- 05

10 15 20 25 30 35 40 45 50 55 60

#processes in system

P{
fa

ilu
re

}

Predicate I Predicate II

Ef fects of fanout on reliability

1.E- 16
1.E- 14
1.E- 12
1.E- 10
1.E- 08
1.E- 06
1.E- 04
1.E- 02
1.E+00

1 2 3 4 5 6 7 8 9 1 0

fanout

P{
fa

ilu
re

}

Predicate I Predicate II

9

Fanout required for a specif ied reliability

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9

20 25 30 35 40 45 50

#processes in system

fa
no

ut

Predicate I for 1E-8 reliability

Predicate II for 1E-12 reliability

Pbcast bimodal delivery distribution

1.E-30

1.E-25

1.E-20

1.E-15

1.E-10

1.E-05

1.E+00

0 5 10 15 20 25 30 35 40 45 50

number of processes to deliver pbcast

p{
#p

ro
ce

ss
es

=k
}

Scalability of Pbcast reliability

1.E-35

1.E-30

1.E-25
1.E-20

1.E-15

1.E-10

1.E-05

10 15 20 25 30 35 40 45 50 55 60

#processes in system

P{
fa

ilu
re

}

Predicate I Predicate II

Ef fects of f anout on reliability

1.E-16
1.E-14
1.E-12
1.E-10
1.E-08
1.E-06
1.E-04
1.E-02
1.E+00

1 2 3 4 5 6 7 8 9 1 0

fanout

P{
fa

ilu
re

}

Predicate I Predicate II

Fanout required f or a specif ied reliability

4
4.5

5
5.5

6
6.5

7
7.5

8
8.5

9

20 25 30 35 40 45 50

#processes in system

fa
no

ut

Predicate I for 1E-8 reliability

Predicate II for 1E-12 reliability

Figure 5: Graphs of analytical results

Discussion

We see that pbcast is indeed bimodal
even in worst case, when initial
multicast fails
Can easily tune parameters to obtain
desired guarantees of reliability
Protocol is suitable for use in
applications where bounded risk of
undesired outcome is sufficient

Model makes assumptions...

These are rather simplistic
Yet the model seems to predict behavior in
real networks, anyhow
In effect, the protocol is not merely robust to
process perturbation and message loss, but
also to perturbation of the model itself
Speculate that this is due to the incredible
power of exponential convergence...

Experimental work

SP2 is a large network
Nodes are basically UNIX workstations
Interconnect is basically an ATM network
Software is standard Internet stack (TCP, UDP)

We obtained access to as many as 128 nodes
on Cornell SP2 in Theory Center
Ran pbcast on this, and also ran a second
implementation on a real network

Example of a question

Create a group of 8 members
Perturb one member in style of Figure 1
Now look at “stability” of throughput

Measure rate of received messages during
periods of 100ms each
Plot histogram over life of experiment

10

Histogram of throughput for Ensemble's FIFO
Virtual Synchrony Protocol

0

0.2

0.4

0.6

0.8

0.0
05

0.0
15

0.0
25

0.0
35

0.0
45

0.0
55

0.0
65

Inter-arrival spacing (ms)

Pr
ob

ab
ili

ty
 o

f o
cc

ur
en

ce

Traditional Protocol
w ith .05 sleep
probability

Traditional Protocol
w ith .45 sleep
probability

Histogram of throughput for pbcast

0

0.2

0.4

0.6

0.8

1

0.0
05

0.0
15

0.0
25

0.0
35

0.0
45

0.0
55

0.0
65

Inte r -arr ival spacing (m s)

Pr
ob

ab
ili

ty
 o

f o
cc

ur
en

ce

Pbcast w ith .05
s leep probability

Pbcast w ith .45
s leep probability

Source to dest latency distributions

Notice that in
practice, bimodal
multicast is fast!

Now revisit Figure 1 in detail

Take 8 machines
Perturb 1
Pump data in at varying rates, look at
rate of received messages

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140

160

180

200
Low bandwidth comparison of pbcast performance at faulty and correct hosts

perturb rate

av
er

ag
e

th
ro

ug
hp

ut

traditional w/1 perturbed
pbcast w/1 perturbed
throughput for traditional, measured at perturbed host
throughput for pbcast measured at perturbed host

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

140

160

180

200
High bandwidth comparison of pbcast performance at faulty and correct hosts

perturb rate

av
er

ag
e

th
ro

ug
hp

ut

traditional: at unperturbed host
pbcast: at unperturbed host
traditional: at perturbed host
pbcast: at perturbed host

Revisit our original scenario with
perturbations (32 processes)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
180

185

190

195

200

205

210

215

220
mean and standard deviation of pbcast throughput: 16-member group

perturb rate

th
ro

ug
hp

ut
 (m

sg
s/

se
c)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
180

185

190

195

200

205

210

215

220
mean and standard deviation of pbcast throughput: 96-member group

perturb rate

th
ro

ug
hp

ut
 (m

sg
s/

se
c)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
180

185

190

195

200

205

210

215

220
mean and standard deviation of pbcast throughput: 128-member group

perturb rate

th
ro

ug
hp

ut
 (m

sg
s/

se
c)

0 50 100 150
0

50

100

150
standard deviation of pbcast throughput

process group size

st
an

da
rd

 d
ev

ia
tio

n

Throughput variation as a
function of scale

Impact of packet loss on
reliability and retransmission rate

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100
Pbcast background overhead: perturbed process percentage (25%)

perturb rate

re
tra

ns
m

itt
ed

 m
es

sa
ge

s
(%

)

8 nodes
16 nodes
64 nodes
128 nodes

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

20

40

60

80

100

120

140

160

180

200

Pbcast with system-wide message loss: high and low bandwidth

system-wide drop rate

av
er

ag
e

th
ro

ug
hp

ut
 o

f r
ec

ei
ve

rs

hbw:8
hbw:32
hbw:64
hbw:96
lbw:8
lbw:32
lbw:64
lbw:96

Notice that when network becomes
overloaded, healthy processes
experience packet loss!

What about growth of
overhead?

Look at messages other than original
data distribution multicast
Measure worst case scenario: costs at
main generator of multicasts
Side remark: all of these graphs look
identical with multiple senders or if
overhead is measured elsewhere….

11

64 nodes - 16 perturbed processes

0
20
40
60
80

100

0.1 0.2 0.3 0.4 0.5

perturb rate

av
er

ag
e

ov
er

he
ad

128 nodes - 32 perturbed processes

0
20
40
60
80

100

0.1 0.2 0.3 0.4 0.5

perturb rate

av
er

ag
e

ov
er

he
ad

8 nodes - 2 perturbed processes

0
20
40
60
80

100

0.1 0.2 0.3 0.4 0.5

perturb rate

av
er

ag
e

ov
er

he
ad

(m

sg
s/

se
c)

16 nodes - 4 perturbed processes

0
20
40
60
80

100

0.1 0.2 0.3 0.4 0.5

perturb rate

av
er

ag
e

ov
er

he
ad Growth of Overhead?

Clearly, overhead does grow
We know it will be bounded except for
probabilistic phenomena
At peak, load is still fairly low

Pbcast versus SRM, 0.1%
packet loss rate on all links

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
PBCAST and SRM with system wide constant noise, tree topology

group size

re
qu

es
ts

/s
ec

 re
ce

ive
d

SRM

Pbcast

adaptive SRM

Pbcast-IPMC

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
PBCAST and SRM with system wide constant noise, tree topology

group size

re
pa

irs
/s

ec
 re

ce
ive

d

SRM

Pbcast

adaptive SRM

Pbcast-IPMC

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15
PBCAST and SRM with system wide constant noise, star topology

group size

re
qu

es
ts

/s
ec

 re
ce

ive
d SRM

Pbcast

adaptive SRM

Pbcast-IPMC

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60
PBCAST and SRM with system wide constant noise, star topology

group size

re
pa

irs
/s

ec
 re

ce
ive

d

SRM

Pbcast

adaptive SRM

Pbcast-IPMC

Tree
networks

Star
networks

Pbcast versus SRM: link
utilization

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

50
PBCAST and SRM with system wide constant noise, tree topology

group size

lin
k

ut
ili

za
tio

n
on

 a
n

ou
tg

oi
ng

 li
nk

 fr
om

 s
en

de
r

Pbcast
Pbcast-IPMC
SRM
Adaptive SRM

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20
PBCAST and SRM with system wide constant noise, tree topology

group size

lin
k

ut
ili

za
tio

n
on

 a
n

in
co

m
in

g
lin

k
to

 s
en

de
r

Pbcast
Pbcast-IPMC
SRM
Adaptive SRM

Pbcast versus SRM: 300 members on a
1000-node tree, 0.1% packet loss rate

0 20 40 60 80 100 120
0

5

10

15

20

25

30
Pbcast and SRM with 0.1% system wide constant noise, 1000-node tree topology

group size

re
qu

es
ts

/s
ec

 re
ce

ive
d

SRM

Pbcast

adaptive SRM

Pbcast-IPMC

0 20 40 60 80 100 120
0

5

10

15

20

25

30
Pbcast and SRM with 0.1% system wide constant noise, 1000-node tree topology

group size

re
pa

irs
/s

ec
 re

ce
ive

d SRM

Pbcast

adaptive SRM

Pbcast-IPMC

Pbcast Versus SRM:
Interarrival Spacing

12

Pbcast versus SRM: Interarrival spacing (500
nodes, 300 members, 1.0% packet loss)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100
1% system wide noise, 500 nodes, 300 members, pbcast-grb

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100
1% system wide noise, 500 nodes, 300 members, pbcast-grb

latency after FIFO ordering (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100
1% system wide noise, 500 nodes, 300 members, srm

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

Real Data: Spinglass on a 10Mbit
ethernet (35 Ultrasparc’s)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

sec
0 10 20 30 40 50 60 70 80 90 100

50

60

70

80

90

100

110

120

130

140

150

sec

#m
sg

s

Injected noise, retransmission
limit disabled

Injected noise, retransmission
limit re-enabled

Networks structured as
clusters

Sender

Receiver

High noise rate

Sender

Receiver

Limited
bandwidth
(1500Kbits)

Bandwidth of
other
links:10Mbits

Delivery latency in a 2-cluster LAN,
50% noise between clusters, 1% elsewhere

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45
partitioned nw, 50% noise between clusters, 1% system wide noise, n=80, pbcast-grb

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45
partitioned nw, 50% noise between clusters, 1% system wide noise, n=80, pbcast-grb

latency after FIFO ordering (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45
srm

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45
srm adaptive

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

Requests/repairs and latencies
with bounded router bandwidth

0 20 40 60 80 100 120
0

20

40

60

80

100

120

140

160

180

200
limited bw on router, 1% system wide constant noise

group size

re
qu

es
ts

/s
ec

 re
ce

ive
d

pbcast-grb
srm

0 20 40 60 80 100 120
0

20

40

60

80

100

120
limited bw on router, 1% system wide constant noise

group size

re
pa

irs
/s

ec
 re

ce
ive

d

pbcast-grb
srm

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15
limited bw on router, noise=1%, n=100, pbcast-grb

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15
limited bw on router, noise=1%, n=100, pbcast-grb

latency after FIFO ordering (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15
limited bw on router, noise=1%, n=100, srm

latency at node level (second)

pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

Discussion
Saw that stability of protocol is exceptional
even under heavy perturbation
Overhead is low and stays low with system
size, bounded even for heavy perturbation
Throughput is extremely steady
In contrast, virtual synchrony and SRM both
are fragile under this sort of attack

13

Programming with pbcast?

Most often would want to split
application into multiple subsystems

Use pbcast for subsystems that generate
regular flow of data and can tolerate
infrequent loss if risk is bounded
Use stronger properties for subsystems
with less load and that need high
availability and consistency at all times

Programming with pbcast?

In stock exchange, use pbcast for pricing but
abcast for “control” operations
In hospital use pbcast for telemetry data but
use abcast when changing medication
In air traffic system use pbcast for routine
radar track updates but abcast when pilot
registers a flight plan change

Our vision: One protocol side-
by-side with the other

Use virtual synchrony for replicated
data and control actions, where strong
guarantees are needed for safety
Use pbcast for high data rates, steady
flows of information, where longer term
properties are critical but individual
multicast is of less critical importance

Summary

New data point in a familiar spectrum
Virtual synchrony
Bimodal probabilistic multicast
Scalable reliable multicast

Demonstrated that pbcast is suitable for
analytic work
Saw that it has exceptional stability

