
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Reminder: Distributed Hash
Table (DHT)

A service, distributed over multiple machines,
with hash table semantics

Insert(key, value), Value(s) = Lookup(key)

Designed to work in a peer-to-peer (P2P)
environment

No central control
Nodes under different administrative control

But of course can operate in an “infrastructure”
sense

P2P “environment”

Nodes come and go at will (possibly
quite frequently---a few minutes)
Nodes have heterogeneous capacities

Bandwidth, processing, and storage

Nodes may behave badly
Promise to do something (store a file) and
not do it (free-loaders)
Attack the system

Several flavors, each with
variants

Tapestry (Berkeley)
Based on Plaxton trees---similar to hypercube
routing
The first* DHT
Complex and hard to maintain (hard to
understand too!)

CAN (ACIRI), Chord (MIT), and Pastry
(Rice/MSR Cambridge)

Second wave of DHTs (contemporary with and
independent of each other)

* Landmark Routing, 1988, used a form of DHT
called Assured Destination Binding (ADB)

Basics of all DHTs

Goal is to build some “structured”
overlay network with the following
characteristics:

Node IDs can be mapped to the hash key
space
Given a hash key as a “destination
address”, you can route through the
network to a given node
Always route to the same node no matter
where you start from

13

33

5881

97

111
127

Simple example (doesn’t
scale)

Circular number space 0 to 127
Routing rule is to move clockwise until
current node ID ≥ key, and last hop
node ID < key

Example: key = 42
Obviously you will route to node 58
from no matter where you start
Node 58 “owns” keys in [34,58]

13

33

5881

97

111
127

2

81

Building any DHT
Newcomer always starts with at
least one known member13

33

58

97

111
127

24

Building any DHT
Newcomer always starts with at
least one known member
Newcomer searches for “self” in
the network

hash key = newcomer’s node ID
Search results in a node in the vicinity
where newcomer needs to be

81

13

33

58

97

111
127

24

Building any DHT
Newcomer always starts with at
least one known member
Newcomer searches for “self” in
the network

hash key = newcomer’s node ID
Search results in a node in the vicinity
where newcomer needs to be

Links are added/removed to satisfy
properties of network

81

13

33

58

97

111
127

24

Building any DHT
Newcomer always starts with at least one
known member
Newcomer searches for “self” in the
network

hash key = newcomer’s node ID
Search results in a node in the vicinity
where newcomer needs to be
Links are added/removed to satisfy
properties of network
Objects that now hash to new node are
transferred to new node

81

13

33

58

97

111
127

24

Insertion/lookup for any DHT

Hash name of object to produce
key

Well-known way to do this

Use key as destination address to
route through network

Routes to the target node

Insert object, or retrieve object,
at the target node

81

13

33

58

97

111
127

24

foo.htm→93

Properties of all DHTs

Memory requirements grow (something like)
logarithmically with N (exception: Kelips)
Routing path length grows (something like)
logarithmically with N (several exceptions)
Cost of adding or removing a node grows
(something like) logarithmically with N
Has caching, replication, etc…

3

DHT Issues

Resilience to failures
Load Balance

Heterogeneity
Number of objects at each node
Routing hot spots
Lookup hot spots

Locality (performance issue)
Churn (performance and correctness issue)
Security

We’re going to look at four
DHTs

At varying levels of detail…
Chord

MIT (Stoica et al)
Kelips

Cornell (Gupta, Linga, Birman)
Pastry

Rice/Microsoft Cambridge (Druschel, Rowstron)
Behive

Cornell (Ramasubramanian, Sirer)

Things we’re going to look at

What is the structure?
How does routing work in the structure?
How does it deal with node departures?
How does it scale?
How does it deal with locality?
What are the security issues?

Chord uses a circular ID
space

N32

N10

N100

N80

N60

Circular
ID Space

• Successor: node with next highest ID

K33, K40, K52

K11, K30

K5, K10

K65, K70

K100

Key ID Node ID

Chord slides care of Robert Morris, MIT

Basic Lookup

N32

N10

N5

N20

N110

N99

N80

N60

N40

“Where is key 50?”

“Key 50 is
At N60”

• Lookups find the ID’s successor
• Correct if predecessor is correct

Successor Lists Ensure Robust Lookup

• Each node remembers r successors
• Lookup can skip over dead nodes to find blocks
• Periodic check of successor and predecessor links

N32

N10
N5

N20

N110

N99

N80

N60

N40

10, 20, 32
20, 32, 40

32, 40, 60

40, 60, 80

60, 80, 99

80, 99, 110

99, 110, 5

110, 5, 10

5, 10, 20

4

Chord “Finger Table”
Accelerates Lookups

N80

½¼

1/8

1/16
1/32
1/64
1/128

To build finger tables, new
node searches for the key
values for each finger

To do it efficiently, new
nodes obtain successor’s
finger table, and use as a
hint to optimize the search

Chord lookups take O(log N)
hops

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

Drill down on Chord reliability

Interested in maintaining a correct routing
table (successors, predecessors, and fingers)
Primary invariant: correctness of successor
pointers

Fingers, while important for performance, do not
have to be exactly correct for routing to work
Algorithm is to “get closer” to the target
Successor nodes always do this

Maintaining successor pointers

Periodically run “stabilize” algorithm
Finds successor’s predecessor
Repair if this isn’t self

This algorithm is also run at join
Eventually routing will repair itself
Fix_finger also periodically run

For randomly selected finger

Initial: 25 wants to join correct
ring (between 20 and 30)

20

30

25

20

30 25

20

30

25

25 finds successor,
and tells successor
(30) of itself

20 runs “stabilize”:
20 asks 30 for 30’s predecessor
30 returns 25
20 tells 25 of itself

This time, 28 joins before 20
runs “stabilize”

20

30 25

28
20

30

25

28

28 finds successor,
and tells successor
(30) of itself

20

30

28

25

20 runs “stabilize”:
20 asks 30 for 30’s predecessor
30 returns 28
20 tells 28 of itself

5

20

30

28

25

25 runs “stabilize”

20

30

28

25
25

30

28

20

20 runs “stabilize”

Chord problems?

With intense “churn” ring may be very
disrupted

Worse case: partition can provoke formation of
two distinct rings (think “Cornell ring” and “MIT
ring”)
And they could have finger pointers to each other,
but not link pointers
This might never heal itself…
But scenario would be hard to induce.

Unable to resist Sybil attacks

Pastry also uses a circular
number space

Difference is in how
the “fingers” are
created
Pastry uses prefix
match overlap
rather than binary
splitting
More flexibility in
neighbor selection

d46a1c

Route(d46a1c)

d462ba
d4213f

d13da3

65a1fc

d467c4
d471f1

Pastry routing table (for node
65a1fc)

Pastry nodes also
have a “leaf set” of
immediate neighbors
up and down the ring

Similar to Chord’s list
of successors

Pastry join
X = new node, A = bootstrap, Z = nearest node
A finds Z for X
In process, A, Z, and all nodes in path send state
tables to X
X settles on own table

Possibly after contacting other nodes

X tells everyone who needs to know about itself
Pastry paper doesn’t give enough information to
understand how concurrent joins work

18th IFIP/ACM, Nov 2001

Pastry leave

Noticed by leaf set neighbors when leaving
node doesn’t respond

Neighbors ask highest and lowest nodes in leaf set
for new leaf set

Noticed by routing neighbors when message
forward fails

Immediately can route to another neighbor
Fix entry by asking another neighbor in the same
“row” for its neighbor
If this fails, ask somebody a level up

6

For instance, this neighbor
fails

Ask other neighbors

Try asking some
neighbor in the same
row for its 655x entry

If it doesn’t have one, try
asking some neighbor in
the row below, etc.

CAN, Chord, Pastry differences

CAN, Chord, and Pastry have deep similarities
Some (important???) differences exist

We didn’t look closely at it, but CAN nodes tend to
know of multiple nodes that allow equal progress

Can therefore use additional criteria (RTT) to pick next
hop

Pastry allows greater choice of neighbor
Can thus use additional criteria (RTT) to pick neighbor

In contrast, Chord has more determinism
Some recent work exploits this to make Chord tolerant of
Byzantine attacks (but cost is quite high)

Kelips takes a different
approach

Network partitioned into √N “affinity groups”
Hash of node ID determines which affinity
group a node is in
Each node knows:

One or more nodes in each group
All objects and nodes in own group

But this knowledge is soft-state, spread
through peer-to-peer “gossip” (epidemic
multicast)!

Kelips

30

110

230 202

Take a a collection
of “nodes”

Kelips

0 1 2

30

110

230 202

Affinity Groups:
peer membership thru consistent hash

1N −

N
members
per affinity
group

Map nodes to
affinity groups

7

Kelips

0 1 2

30

110

230 202

Affinity Groups:
peer membership thru consistent hash

1N −

Affinity group
pointers

N
members
per affinity
group

rtthbeatid

30ms322230

90ms23430

Affinity group view

110 knows about
other members –

230, 30…
Kelips

0 1 2

30

110

230 202

Affinity Groups:
peer membership thru consistent hash

1N −

Contact
pointers

N
members
per affinity
group

rtthbeatid

30ms322230

90ms23430

Affinity group view

……

2022

contactNodegroup

Contacts

202 is a
“contact” for

110 in group 2
In practice, keep k
contacts, for some
small constant k

Kelips

0 1 2

30

110

230 202

Affinity Groups:
peer membership thru consistent hash

1N −

Gossip protocol
replicates data

cheaply

N
members
per affinity
group

rtthbeatid

30ms322230

90ms23430

Affinity group view

……

2022

contactNodegroup

Contacts

……

110cnn.com

inforesource

Resource Tuples

“cnn.com” maps to group 2.
So 110 tells group 2 to “route”
inquiries about cnn.com to it.

Kelips

0 1 2

30

110

230 202

Affinity Groups:
peer membership thru consistent hash

1N −

N
members
per affinity
group

To look up “cnn.com”,
just ask some contact
in group 2. It returns

“110” (or forwards
your request).

IP2P, ACM TOIS (submitted)

Kelips gossip

Operates at constant “background” rate
Independent of frequency of changes in
the system
Average overhead may be higher than
other DHTs, but not bursty

If churn too high, system performs
poorly (failed lookups), but does not
collapse…

Beehive

A DHT intended for supporting righ-
performance infrastructure services with
proactive caching

Focus of “real system” is on DNS but has
other applications
Proactive caching: a form of replication.
DNS already caches… Beehive pushes
updates to improve hit rates

8

Domain Name Service
Translates textual names to internet
addresses

“www.cnn.com” -> 1.2.3.4

Relies on a static hierarchy of servers
Prone to DoS attacks
Fragile, expensive to maintain
Slow and sluggish

In 2002, a DDoS attack almost disabled the
root name servers

0122

A Self-Organizing Solution…

oid = 0122

2012

0021

0112

www.cnn.com
IP=1.2.3.4

Great idea, but O(log N) is too slow on the
Internet

Beehive Intuition

2012

0021

0112
0122

Optimization problem: Minimize total number of replicas s.t.,
average lookup performance ≤ C

By replicating a
(key,value) tuple we can
shorten the worst-case

search by one hop

With greater degree of
replication the search

goes even faster
Beehive Summary

general replication framework
suitable for structured DHTs

decentralization, self-organization, resilience

properties
high performance: O(1) average lookup time
scalable: minimize number of replicas and reduce
storage, bandwidth, and network load
adaptive: promptly respond to changes in
popularity – flash crowds

Analytical Problem

Minimize (storage/bandwidth)
x0 + x1/b + x2/b2 + … + xK-1/bK-1

such that (average lookup time is C hops)
(x0

1-α + x1
1-α + x2

1-α + … + xK-1
1-α) ≥ K – C

and
x0 ≤ x1 ≤ x2 ≤ … ≤ xK-1 ≤ 1

b: base K: logb(N)
xj: fraction of objects replicated at level j or lower

Optimal Solution
dj (K’ – C)

1 + d + … + dK’-1

1
1 - α[]x*j =

0 ≤ j ≤ K’ – 1

d = b(1- α) /α

x*j = 1 K’ ≤ j ≤ K

K’ is determined by setting (typically 2 or 3)
x*K’-1 ≤ 1 ⇒ dK’-1 (K’ – C) / (1 + d + … + dK’-1) ≤ 1

optimal per node storage
(1 – 1/b) / (1 + d + … + dK’-1)α/(1- α) + 1/bK’

9

analytical model
optimization problem
minimize: total number of replicas, s.t.,

average lookup performance ≤ C

configurable target lookup performance
continuous range, sub one-hop

minimizing number of replicas decreases
storage and bandwidth overhead

CoDoNS
Sirer’s group built an alternative to DNS

Safety net and replacement for legacy DNS
Self-organizing, distributed

Deployed across the globe

Achieves better average response time than DNS

See NSDI ‘04, SIGCOMM ‘04 for details

Control traffic load generated
by churn

Kelips

None
O(Changes
x Nodes)?O(changes)

Chord Pastry

DHT applications
Company could use DHT to create a big index
of “our worldwide stuff”
Beehive: Rebuilds DNS as a DHT application

No structure required in name!
Fewer administration errors
No DoS target

But benefits aren’t automatic. Contrast with
DNS over Chord

Median lookup time increased from 43ms (DNS) to
350ms

To finish up

Various applications have been
designed over DHTs

File system, DNS-like service, pub/sub
system

DHTs are elegant and promising tools
Concerns about churn and security

