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CS514: Intermediate Course 
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Reminder: Distributed Hash 
Table (DHT)

A service, distributed over multiple machines, 
with hash table semantics

Insert(key, value), Value(s) = Lookup(key)

Designed to work in a peer-to-peer (P2P) 
environment

No central control
Nodes under different administrative control

But of course can operate in an “infrastructure”
sense

P2P “environment”

Nodes come and go at will (possibly 
quite frequently---a few minutes)
Nodes have heterogeneous capacities

Bandwidth, processing, and storage

Nodes may behave badly
Promise to do something (store a file) and 
not do it (free-loaders)
Attack the system

Several flavors, each with 
variants

Tapestry (Berkeley)
Based on Plaxton trees---similar to hypercube 
routing
The first* DHT
Complex and hard to maintain (hard to 
understand too!)

CAN (ACIRI), Chord (MIT), and Pastry 
(Rice/MSR Cambridge)

Second wave of DHTs (contemporary with and 
independent of each other)

*  Landmark Routing, 1988, used a form of DHT
called Assured Destination Binding (ADB)

Basics of all DHTs

Goal is to build some “structured”
overlay network with the following 
characteristics:

Node IDs can be mapped to the hash key 
space
Given a hash key as a “destination 
address”, you can route through the 
network to a given node
Always route to the same node no matter 
where you start from
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Simple example (doesn’t 
scale)

Circular number space 0 to 127
Routing rule is to move clockwise until 
current node ID ≥ key, and last hop 
node ID < key

Example:  key = 42
Obviously you will route to node 58 
from no matter where you start
Node 58 “owns” keys in [34,58]
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Building any DHT
Newcomer always starts with at 
least one known member13
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Building any DHT
Newcomer always starts with at 
least one known member
Newcomer searches for “self” in 
the network

hash key = newcomer’s node ID
Search results in a node in the vicinity 
where newcomer needs to be
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Building any DHT
Newcomer always starts with at 
least one known member
Newcomer searches for “self” in 
the network

hash key = newcomer’s node ID
Search results in a node in the vicinity 
where newcomer needs to be

Links are added/removed to satisfy 
properties of network
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Building any DHT
Newcomer always starts with at least one 
known member
Newcomer searches for “self” in the 
network

hash key = newcomer’s node ID
Search results in a node in the vicinity 
where newcomer needs to be
Links are added/removed to satisfy 
properties of network
Objects that now hash to new node are 
transferred to new node
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Insertion/lookup for any DHT

Hash name of object to produce 
key

Well-known way to do this

Use key as destination address to 
route through network

Routes to the target node

Insert object, or retrieve object, 
at the target node
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Properties of all DHTs

Memory requirements grow (something like) 
logarithmically with N (exception: Kelips)
Routing path length grows (something like) 
logarithmically with N (several exceptions)
Cost of adding or removing a node grows 
(something like) logarithmically with N
Has caching, replication, etc…
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DHT Issues

Resilience to failures
Load Balance

Heterogeneity
Number of objects at each node
Routing hot spots
Lookup hot spots

Locality (performance issue)
Churn (performance and correctness issue)
Security

We’re going to look at four 
DHTs

At varying levels of detail…
Chord

MIT (Stoica et al)
Kelips

Cornell (Gupta, Linga, Birman)
Pastry

Rice/Microsoft Cambridge (Druschel, Rowstron)
Behive

Cornell (Ramasubramanian, Sirer)

Things we’re going to look at

What is the structure?
How does routing work in the structure?
How does it deal with node departures?
How does it scale?
How does it deal with locality?
What are the security issues?

Chord uses a circular ID 
space

N32

N10

N100

N80

N60

Circular
ID Space

• Successor: node with next highest ID

K33, K40, K52

K11, K30

K5, K10

K65, K70

K100

Key ID   Node ID

Chord slides care of Robert Morris, MIT

Basic Lookup

N32

N10

N5

N20

N110

N99

N80

N60

N40

“Where is key 50?”

“Key 50 is
At N60”

• Lookups find the ID’s successor
• Correct if predecessor is correct

Successor Lists Ensure Robust Lookup

• Each node remembers r successors
• Lookup can skip over dead nodes to find blocks
• Periodic check of successor and predecessor links

N32

N10
N5

N20

N110

N99

N80

N60

N40

10, 20, 32
20, 32, 40

32, 40, 60

40, 60, 80

60, 80, 99

80, 99, 110

99, 110, 5

110, 5, 10

5, 10, 20
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Chord “Finger Table”
Accelerates Lookups

N80

½¼

1/8

1/16
1/32
1/64
1/128

To build finger tables, new 
node searches for the key 
values for each finger

To do it efficiently, new 
nodes obtain successor’s 
finger table, and use as a 
hint to optimize the search

Chord lookups take O(log N) 
hops

N32

N10

N5

N20
N110

N99

N80

N60

Lookup(K19)

K19

Drill down on Chord reliability

Interested in maintaining a correct routing 
table (successors, predecessors, and fingers)
Primary invariant: correctness of successor 
pointers

Fingers, while important for performance, do not 
have to be exactly correct for routing to work
Algorithm is to “get closer” to the target
Successor nodes always do this

Maintaining successor pointers

Periodically run “stabilize” algorithm
Finds successor’s predecessor
Repair if this isn’t self

This algorithm is also run at join
Eventually routing will repair itself
Fix_finger also periodically run

For randomly selected finger

Initial:  25 wants to join correct 
ring (between 20 and 30)

20

30

25

20

30 25

20

30

25

25 finds successor, 
and tells successor 
(30) of itself

20 runs “stabilize”:
20 asks 30 for 30’s predecessor
30 returns 25
20 tells 25 of itself

This time, 28 joins before 20 
runs “stabilize”

20

30 25

28
20

30

25

28

28 finds successor, 
and tells successor 
(30) of itself

20

30

28

25

20 runs “stabilize”:
20 asks 30 for 30’s predecessor
30 returns 28
20 tells 28 of itself
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20

30

28

25

25 runs “stabilize”

20

30

28

25
25

30

28

20

20 runs “stabilize”

Chord problems?

With intense “churn” ring may be very 
disrupted

Worse case: partition can provoke formation of 
two distinct rings (think “Cornell ring” and “MIT 
ring”)
And they could have finger pointers to each other, 
but not link pointers
This might never heal itself…
But scenario would be hard to induce.

Unable to resist Sybil attacks

Pastry also uses a circular 
number space

Difference is in how 
the “fingers” are 
created
Pastry uses prefix 
match overlap 
rather than binary 
splitting
More flexibility in 
neighbor selection

d46a1c

Route(d46a1c)

d462ba
d4213f

d13da3

65a1fc

d467c4
d471f1

Pastry routing table (for node 
65a1fc)

Pastry nodes also 
have a “leaf set” of 
immediate neighbors 
up and down the ring

Similar to Chord’s list 
of successors

Pastry join
X = new node, A = bootstrap, Z = nearest node
A finds Z for X
In process, A, Z, and all nodes in path send state 
tables to X
X settles on own table

Possibly after contacting other nodes

X tells everyone who needs to know about itself
Pastry paper doesn’t give enough information to 
understand how concurrent joins work

18th IFIP/ACM, Nov 2001

Pastry leave

Noticed by leaf set neighbors when leaving 
node doesn’t respond

Neighbors ask highest and lowest nodes in leaf set 
for new leaf set

Noticed by routing neighbors when message 
forward fails

Immediately can route to another neighbor
Fix entry by asking another neighbor in the same 
“row” for its neighbor
If this fails, ask somebody a level up
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For instance, this neighbor 
fails

Ask other neighbors

Try asking some 
neighbor in the same 
row for its 655x entry

If it doesn’t have one, try 
asking some neighbor in 
the row below, etc.

CAN, Chord, Pastry differences

CAN, Chord, and Pastry have deep similarities
Some (important???) differences exist

We didn’t look closely at it, but CAN nodes tend to 
know of multiple nodes that allow equal progress

Can therefore use additional criteria (RTT) to pick next 
hop

Pastry allows greater choice of neighbor
Can thus use additional criteria (RTT) to pick neighbor

In contrast, Chord has more determinism
Some recent work exploits this to make Chord tolerant of 
Byzantine attacks (but cost is quite high)

Kelips takes a different 
approach

Network partitioned into √N “affinity groups”
Hash of node ID determines which affinity 
group a node is in
Each node knows:

One or more nodes in each group
All objects and nodes in own group

But this knowledge is soft-state, spread 
through peer-to-peer “gossip” (epidemic 
multicast)!

Kelips

30

110

230 202

Take a a collection 
of “nodes”

Kelips

0 1 2

30

110

230 202

Affinity Groups:
peer membership thru consistent hash

1N −

N
members 
per affinity 
group

Map nodes to 
affinity groups
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Kelips

0 1 2

30

110

230 202

Affinity Groups:
peer membership thru consistent hash

1N −

Affinity group 
pointers

N
members 
per affinity 
group

rtthbeatid

30ms322230

90ms23430

Affinity group view

110 knows about 
other members –

230, 30…
Kelips

0 1 2

30

110

230 202

Affinity Groups:
peer membership thru consistent hash

1N −

Contact 
pointers

N
members 
per affinity 
group

rtthbeatid

30ms322230

90ms23430

Affinity group view

……

2022

contactNodegroup

Contacts

202 is a 
“contact” for 

110 in group 2
In practice, keep k 
contacts, for some 
small constant k

Kelips

0 1 2

30

110

230 202

Affinity Groups:
peer membership thru consistent hash

1N −

Gossip protocol 
replicates data 

cheaply

N
members 
per affinity 
group

rtthbeatid

30ms322230

90ms23430

Affinity group view

……

2022

contactNodegroup

Contacts

……

110cnn.com

inforesource

Resource Tuples

“cnn.com” maps to group 2.  
So 110 tells group 2 to “route”
inquiries about cnn.com to it.

Kelips

0 1 2

30

110

230 202

Affinity Groups:
peer membership thru consistent hash

1N −

N
members 
per affinity 
group

To look up “cnn.com”, 
just ask some contact 
in group 2.  It returns 

“110” (or forwards 
your request).

IP2P, ACM TOIS (submitted)

Kelips gossip

Operates at constant “background” rate
Independent of frequency of changes in 
the system
Average overhead may be higher than 
other DHTs, but not bursty

If churn too high, system performs 
poorly (failed lookups), but does not 
collapse…

Beehive

A DHT intended for supporting righ-
performance infrastructure services with 
proactive caching

Focus of “real system” is on DNS but has 
other applications
Proactive caching: a form of replication. 
DNS already caches… Beehive pushes 
updates to improve hit rates
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Domain Name Service
Translates textual names to internet 
addresses

“www.cnn.com” -> 1.2.3.4

Relies on a static hierarchy of servers
Prone to DoS attacks
Fragile, expensive to maintain
Slow and sluggish

In 2002, a DDoS attack almost disabled the 
root name servers

0122

A Self-Organizing Solution…

oid = 0122

2012

0021

0112

www.cnn.com
IP=1.2.3.4

Great idea, but O(log N) is too slow on the 
Internet

Beehive Intuition

2012

0021

0112
0122

Optimization problem: Minimize total number of replicas s.t.,
average lookup performance ≤ C

By replicating a 
(key,value) tuple we can 
shorten the worst-case 

search by one hop

With greater degree of 
replication the search 

goes even faster
Beehive Summary

general replication framework
suitable for structured DHTs

decentralization, self-organization, resilience

properties
high performance: O(1) average lookup time
scalable: minimize number of replicas and reduce 
storage, bandwidth, and network load
adaptive: promptly respond to changes in 
popularity – flash crowds

Analytical Problem

Minimize (storage/bandwidth)
x0 + x1/b + x2/b2 + … + xK-1/bK-1

such that (average lookup time is C hops)
(x0

1-α + x1
1-α + x2

1-α + … + xK-1
1-α) ≥ K – C

and
x0 ≤ x1 ≤ x2 ≤ … ≤ xK-1 ≤ 1

b: base K: logb(N) 
xj: fraction of objects replicated at level j or lower 

Optimal Solution
dj (K’ – C)

1 + d + … + dK’-1

1
1 - α[ ]x*j =

0 ≤ j ≤ K’ – 1

d = b(1- α) /α

x*j = 1                                                        K’ ≤ j ≤ K

K’ is determined by setting (typically 2 or 3)
x*K’-1 ≤ 1     ⇒ dK’-1 (K’ – C) / (1 + d + … + dK’-1) ≤ 1

optimal per node storage
(1 – 1/b) / (1 + d + … + dK’-1)α/(1- α) + 1/bK’
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analytical model
optimization problem
minimize: total number of replicas, s.t.,

average lookup performance ≤ C

configurable target lookup performance
continuous range, sub one-hop

minimizing number of replicas decreases 
storage and bandwidth overhead

CoDoNS
Sirer’s group built an alternative to DNS

Safety net and replacement for legacy DNS
Self-organizing, distributed

Deployed across the globe

Achieves better average response time than DNS

See NSDI ‘04, SIGCOMM ‘04 for details

Control traffic load generated 
by churn

Kelips

None
O(Changes  
x Nodes)?O(changes)

Chord Pastry

DHT applications
Company could use DHT to create a big index 
of “our worldwide stuff”
Beehive: Rebuilds DNS as a DHT application

No structure required in name!
Fewer administration errors
No DoS target

But benefits aren’t automatic.  Contrast with 
DNS over Chord

Median lookup time increased from 43ms (DNS) to 
350ms

To finish up

Various applications have been 
designed over DHTs

File system, DNS-like service, pub/sub 
system

DHTs are elegant and promising tools
Concerns about churn and security 


