
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Applications of these ideas

Over the past three weeks we’ve heard about
group communication

Process groups
Membership tracking and reporting “new views”
Reliable multicast, ordered in various ways
Dynamic uniformity (safety), quorum protocols

So we know how to build group multicast…
but what good are these things?

Applications of these ideas

Today, we’ll review some practical
applications of the mechanisms we’ve
studied

Each is representative of a class
Goal is to illustrate the wide scope of these
mechanisms, their power, and the ways
you might use them in your own work

Specific topics we’ll cover
Wrappers and Toolkits
Distributed Program-
ming Languages
Wrapping a Simple RPC
server
Wrapping a Web Site

Hardening Other
Aspects of the Web
Unbreakable Stream
Connections
Reliable Distributed
Shared Memory

What should the user “see”?

Presentation of group communication tools to
end users has been a controversial topic for
decades!
Some schools of thought:

Direct interface for creating and using groups
Hide in a familiar abstraction like publish-subscribe
or Windows event notification
Use inside something else, like a cluster mgt.
platform a new programming language

Each approach has pros and cons

Toolkits

Most systems that offer group
communication directly have toolkit
interfaces

User sees a library with various calls and
callbacks
These are organized into “tools”

2

Style of coding?

User writes a program in Java, C, C++, C#...
The program declares “handlers” for events
like new views, arriving messages
Then it joins groups and can send/receive
multicasts
Normally, it would also use threads to interact
with users via a GUI or do other useful things

Toolkit approach: Isis
Join a group, state transfer:
Gid = pg_join(“group-name”,

PG_INIT, init_func, PG_NEWVIEW, got_newview,
XFER_IN, rcv_state, XFER_OUT, snd_state, … 0);

Multicast to a group:
nr = abcast(gid, REQ, “%s,%d”, “a string”, 1234, ALL, “%f”, &fltvec);

Register a callback handler for incoming messages
isis_entry(REQ, got_msg);

Receive a multicast:
void got_msg(message *mp) {

Msg_scan(“%s,%d”, &astring, &anint);
Reply(mp, “%f”, 123.45);

}

A group is created when a join is first issued. In
this case the group initializer function is called.
The user needs to code that function. Here the
“new view” function, also supplied by the user,

gets called when the group membership changes

If the group already exists, a leader is
automatically selected and its XFER_OUT

routine is called. It calls xfer_out repeatedly
to send state. Each call results in a

message delivered to the XFER_IN routine,
which extracts the state from the message

To send a multicast (here, a totally ordered one),
you specify the group identifier from a join or
lookup, a request code (an integer), and then
the message. This multicast builds a message

using a C-style format string. This abcast wants
a reply from all members; the replies are floating
point numbers and the set of replies is stored in
a vector specified by the caller. Abcast tells the

caller how many replies it actually got (nr)

This is how an application registers a
callback handler. In this case the

application is saying that messages with the
specified request code should be passed to

the procedure “got_msg”

Here’s got_msg. It gets invoked when a multicast
arrived with the matching request code. This

particular procedure extracts a string and an integer
from the message and sends a reply. Abcast will
collect all of those replies into a vector, set the

caller’s pointer to point to that vector, and return the
number of replies it received (namely, the number of

members in the current view)

Threading
A tricky topic in Isis

The user needs threads, e.g. to deal with I/O from
the client while also listening for incoming
messages, or to accept new requests while
waiting for replies to an RPC or multicast
But the user also needs to know that messages
and new views are delivered in order, hence
concurrent threads pose issues

Solution? Isis acts like a “monitor” with
threads, but running them one at a time
unless the user explicitly “exits” the monitor

A tricky model to work with!

We have…
Threads, which many people find tricky
Virtual synchrony, including choices of
ordering
A new distributed “abstraction” (groups)

Developers will be making lots of
choices, some with big performance
implications, and this is a negative

Examples of tools in toolkit

Group join, state
xfer
Leader selection
Holding a “token”
Checkpointing a
group

Data replication
Locking
Primary-backup
Load-balancing
Distributed snapshot

How toolkits work

They offer a programmer API
More procedures, e.g.

Create_replicated_data(“name”, type)
Lock_replica(“name”)
Update_replica(“name”, value)
V = (type)Read_replica(“name”)

Internally, these use groups & multicast
Perhaps, asynchronous cbcast as discussed last week…
Toolkit builder optimizes extensively, etc…

3

How programmers use toolkits

Two main styles
Replicating a data structure

For example, “air traffic sector D-5”
Consists of all the data associated with that
structure… could be quite elaborate
Processes sharing the structure could be very
different (maybe not even the same language)

Replicating a service
For high availability, load-balancing

Experience is mixed….
Note that many systems use group communication
but don’t offer “toolkits” to developers/end users
Major toolkit successes include New York and Swiss
Stock Exchange, French Air Traffic Control System,
US AEGIS warship, various VLSI Fab systems, etc

But building them demanded special programmer expertise
and knowledge of a large, complex platform
Not every tool works in every situation! Performance
surprises & idiosyncratic behavior common. Toolkits never
caught on the way that transactions became standard

But there are several popular toolkits, like JGroups,
Spread and Ensemble. Many people do use them

Leads to notion of “wrappers”

Suppose that we could have a
magic wand and wave it at some
system component

“Replicatum transparentus!”

Could we “automate” the use of
tools and hide the details from
programmers?

Wrapper examples

Transparently…
Take an existing service and “wrap” it so
as to replicate inputs, making it fault-
tolerant
Take a file or database and “wrap” it so
that it will be replicated for high availability
Take a communication channel and “wrap”
it so that instead of connecting to a single
server, it connects to a group

Experience with wrappers?

Transparency isn’t always a good thing
CORBA has a fault-tolerance wrapper

In CORBA, programs are “active objects”
The wrapper requires that these be
deterministic objects with no GUI (e.g. servers)
CORBA replaces the object with a group, and
uses abcast to send requests to the group.

Members do the same thing, “state machine” style
So replies are identical. Give the client the first one

Why CORBA f.tol. was a flop
Users find the determinism assumption too
constraining

Prevents use of threads, shared memory, system
clock, timers, multiple I/O channels…
Real programs sometimes use these sorts of
things unknown to the programmer

Who knows how the .NET I/O library was programmed
by Microsoft? Could it have threads inside, or timers?

Moreover, costs were high
Twice as much hardware… slower performance!
Also, had to purchase the technology separately
from your basic ORB (and for almost same price)

4

Files and databases?

Here, issue is that there are other ways
to solve the same problem

A file, for example, could be put on a RAID
file server
This provides high speed and high capacity
and fault-tolerance too
Software replication can’t easily compete

How about “TCP to a group?”

This is a neat application and very interesting
to discuss. We saw it in lecture 11. Let’s
look at it again, carefully

Goals:
Client system runs standard, unchanged TCP
Server replaced by a group… leader owns the TCP
endpoint but if it crashes, someone else takes
over and client sees no disruption at all!

How would this work?

Revisit idea from lecture 11
Reminder: TCP is a kind of state machine

Events occur (incoming IP packets, timeouts,
read/write requests from app)
These trigger “actions” (sending data packets,
acks, nacks, retransmission)
We can potentially checkpoint the state of a TCP
connection or even replicate it in realtime!

How to “move” a TCP connection

We need to move the IP address
We know that in the modern internet, IP
addresses do move, all the time
NATs and firewalls do this, why can’t we?

We would also need to move the TCP
connection “state”

Depending on how TCP was implemented
this may actually be easy!

Migrating a TCP connection

client

Initial Server

New Server

Client “knows” the server by its TCP endpoint:
an IP address and port that speak TCP and

have the state of this connection

The server-side state consists of the contents
of the TCP window (on the server), the socket
to which the IP address and port are bound,
and timeouts or ACK/NACK “pending actions”

We can write this into a checkpoint record

TCP state

TCP state

We transmit the TCP state (with any other tasks we
migrate) to the new server. It opens a socket, binds
to the SAME IP address, initializes its TCP stack out of

the checkpoint received from the old server

The client never even notices that the channel
endpoint was moved!

The old server discards its connection endpoint

TCP connection state

Includes:
The IP address, port # used by the client
and the IP address and port on the server

Best to think of the server as temporarily
exhibiting a “virtual address”
That address can be moved

Contents of the TCP “window”
We can write this down and move it too

ACK/NACK state, timeouts

5

Generalizing the idea

Create a process group
Use multicasts when each event occurs
(abcast)
All replicas can track state of the leader
Now if a new view shows that the leader
has failed, a replica can take over by
binding to the IP address

Fault-tolerant TCP connection

client

Initial Server

New Server

With replication technology we could
continuously replicate the connection
state (as well as any “per task” state

needed by the server)

Fault-tolerant TCP connection

client

Initial Server

New Server

After a failure, the new server could
take over, masking the fault. The

client doesn’t notice anything

What’s new?

In lecture 11 we didn’t know much
about multicast… now we do
This lets us ask how costly the solution
would be
In particular

Which multicast should be used?
When would a delay be incurred?

Choice of multicast

We need to be sure that everyone sees
events in the identical order

Sounds like abcast

But in fact there is only a single sender
at a time, namely the leader

Fbcast is actually adequate!
Advantage: leader doesn’t need to
multicast to itself, only to the replicas

Timeline picture

client

leader

replica

An IP packet
generated by
TCP

Leader fbcasts the
“event description”

Leader bound to
IP address

replica binds to IP address, now
it owns the TCP stack

Leader doesn’t need to wait
(to “sync”) here because the
client can’t see any evidence
of the leader’s TCP protocol

stack state

Leader does need to wait before
sending this IP packet to the client,

(to “sync”) to be sure that if he
crashes, client TCP stack will be in

the same state as his was

6

Asynchronous multicast

This term is used when we can send a
multicast without waiting for replies
Our example uses asynchronous fbcast

An especially cheap protocol: often just sends a
UDP packet
Acks and so forth can happen later and be
amortized over many multicasts

“Sync” is slower: must wait for an ack
But often occurs in background while leader is
processing the request, “hiding” the cost!

Sources of delay?

Building event messages to represent TCP
state, sending them

But this can occur concurrently with handing data
to the application and letting it do whatever work
is required
Unless TCP data is huge, delay is very small

Synchronization before sending packets of
any kind to client

Must be certain that replica is in the identical state

How visible will delay be?

This version of TCP
May notice overhead for very small round-trip
interactions: puts the sync event right in the
measured RTT path

Although replica is probably close by with a very fast
connection to the leader, whereas client is probably far
away with a slow connection…

But could seem pretty much as fast as a normal
TCP if the application runs for a long time, since
that time will hide the delay of synchronizing
leader with replica!

Using our solution?

Now we can wrap a web site or some
other service

Run one copy on each of two or more
machines
Use our replicated TCP

Application sees identical inputs and
produces identical outputs…

Repeat of CORBA f.tol. idea?

Not exactly…
We do need determinism with respect to
the TCP inputs
But in fact we don’t need to legislate that
“the application must be a deterministic
object”
Users could, for example, use threads as
long as they ensure that identical TCP
inputs result in identical replies

Determinism worry

Recall that CORBA transparently replicates
objects

But insists that they be deterministic
And this was an unpopular requirement

Our “Web Services wrapper” does too
But only requires determinism with respect to the
TCP inputs
The server could be quite concurrent as long as its
state and actions will be identical given same TCP
request sequence: a less demanding requirement

7

Would users accept this?

Unknown: This style of wrapping has
never been explored in commercial
products
But the idea seems appealing… perhaps
someone in the class will find out…

Distributed shared memory

A new goal: software DSM
Looks like a memory-mapped file
But data is automatically replicated, so all
users see identical content

Requires a way for DSM server to
intercept write operations

Some insights that might help

Assume that programs have locality
In particular, that there tends to be one
writer in a given DSM page at a time
Moreover, that both writers and readers
get some form of locks first

Why are these legitimate assumptions?
Lacking them, application would be highly
non-deterministic and probably incorrect

So what’s the model?

Application “maps” a region of memory
While running, it sometimes

Acquires a read or write lock
Then for a period of time reads or writes
some part of the DSM (some “pages”)
Then releases the lock

Gee… this is just our distributed
replication model in a new form!

To implement this DSM…

We need a way to
Implement the mapping
Detect that a page has become dirty
Invoke our communication primitives when a lock
is requested or released

Idea:
Use the Linux mapped file primitives and build a
DSM “daemon” to send updates
Intercept Linux semaphore operations for
synchronization

DSM with a daemon

DSMD DSMD

Wrapper intercepts mmap and semaphore operations
and redirects those associated with the shared memory
region to the DSMD. We’ll assume that the developer
comes up with a sensible convention for associating

semaphores either with entire mapped regions, or with
pages of them

Mmap creates shared memory regions.
The DSMD will multicast the contents

of a page when the associated
semaphore lock is released.

Properties of the multicast and of the
locking “protocol” determine the DSM
properties seen by the user. The user

doesn’t use multicast directly

8

Design choices?

We need to decide how semaphores are
associated with the mapped memory

E.g. could have one semaphore for the
whole region; treat it as an exclusive lock
Or could have one per page
Could event implement a readers/writers
mechanism, although this would depart
from the Linux semaphore API

Design choices?
Must also pick a memory coherency model:

Strong consistency: The DSM behaves like a single non-
replicated memory
Weak consistency: The DSM can be highly inconsistent.
Updates propagate after an unspecified and possibly long
delay, and copies of the mapped region may differ
Release consistency (DASH project): Requires locking for
mutual exclusion; consistent as long as locking is used
Causal consistency (Neiger and Hutto): If DSM update
a → b, then b will observe the results of a.

Best choice?

We should probably pick release
consistency or causal consistency

Release consistency requires fbcast
Causal consistency would use cbcast

The updates end up totally ordered
along mutual exclusion paths and the
primitive is strong enough to maintain
this delivery ordering at all copies

False sharing

One issue designer must worry about
Suppose multiple independent objects map
to the same page but have distinct locks
In a traditional hardware DSM page ends
up ping-ponging between the machines
In our solution, this just won’t work!

Our mechanism requires that there be
one lock per “page”

Would this work?

In fact it can work extremely well
In years past, students have implemented
this form of DSM as a course project
Performance is remarkably good if the
application “understands” the properties of
the DSM

Notice that DSM is really just a different
API for offering multicast to user…

“Tools” we didn’t discuss today

Many people like publish-subscribe
Could just map topics to groups
But this requires that the group communication
system scale extremely well in the numbers of
groups, a property not all GCS platforms exhibit
Interesting current research topic

JGroups, Ensemble just have regular groups and can’t
handle apps that create millions of them
Spread tackles with “lightweight” groups… but his has
some overheads (it delivers, then discards, extra msgs)
QuickSilver now investigating a new approach

9

Recap of today’s lecture

… we’ve looked at each of these topics
and seen that with a group multicast
platform, the problem isn’t hard to solve

Wrappers and Toolkits
Distributed Program-
ming Languages
Wrapping a Simple RPC
server
Wrapping a Web Site

Hardening Other
Aspects of the Web
Unbreakable Stream
Connections
Reliable Distributed
Shared Memory

