
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Quorum replication

n We developed a whole architecture based on
our four-step recipe

n But there is a second major approach that
also yields a complete group communication
framework and solutions
n Based on “quorum” read and write operations

n Omits notion of process group views

Today’s topic

n Quorum methods from a mile high
n Don’t have time to be equally detailed

n We’ll explore
n How the basic read/update protocol works
n Failure considerations
n State machine replication (a form of lock-

step replication for deterministic objects)
n Performance issues

A peek at the conclusion

n These methods are
n Widely known and closely tied to consensus

n Perhaps, easier to implement

n But they have serious drawbacks:
n Need deterministic components
n Are drastically slower (10s-100s of events/second)

n Big win?
n Recent systems combine quorums with Byzantine

Agreement for ultra -sensitive databases

Static membership

n Subsets of a known set of processes
n E.g. a cluster of five machines, each

running replica of a database server
n Machines can crash or recover but don’t

depart permanently and new ones don’t
join “out of the blue”

n In practice the dynamic membership
systems can easily be made to work
this way… but usually aren’t

Static membership example

p

q

r

s

t

client

Qread = 2, Qwrite = 4

read write read Write fails

To do a read, this client
(or even a group

member) must access
at least 2 replicas

To do a write, must
update at least 4

replicas

This write will fail: the client only manages to
contact 2 replicas and must “abort” the
operation (we use this terminology even

though we aren’t doing transactions)

2

Quorums

n Must satisfy two basic rules
1. A quorum read should “intersect” any

prior quorum write at >= 1 processes
2. A quorum write should also intersect any

other quorum write

n So, in a group of size N:
1. Qr + Qw > N, and
2. Qw + Qw > N

Versions of replicated data

n Replicated data items have “versions”,
and these are numbered
n I.e. can’t just say “Xp=3”. Instead say that

Xp has timestamp [7,q] and value 3
n Timestamp must increase monotonically

and includes a process id to break ties
n This is NOT the pid of the update source…

we’ll see where it comes from

Doing a read is easy

n Send RPCs until Qr processes reply
n Then use the value with the largest

timestamp
n Break ties by looking at the pid
n For example

n [6,x] < [9,a] (first look at the “time”)
n [7,p] < [7,q] (but use pid as a tie-breaker)

n Even if a process owns a replica, it can’t just
trust it’s own data. Every “read access” must
collect Qr values first…

Doing a write is trickier

n First, we can’t support incremental updates (x=x+1),
since no process can “trust” its own replica.
n Such updates require a read followed by a write.

n When we initiate the write, we don’t know if we’ll
succeed in updating a quorum of processes
n wE can’t update just some subset; that could confuse a

reader
n Hence need to use a commit protocol

n Moreover, must implement a mechanism to
determine the version number as part of the
protocol. We’ll use a form of voting

The sequence of events
1. Propose the write: “I would like to set X=3”

2. Members “lock” the variable against reads, put the request
into a queue of pending writes (must store this on disk or
in some form of crash-tolerant memory), and send back:

“OK. I propose time [t,pid]”

Here, time is a logical clock. Pid is the member’s own pid

3. Initiator collects replies, hoping to receive Qw (or more)

≥ Qw OKs

Compute maximum of
proposed [t,pid] pairs.

Commit at that time

Abort

< Qw OKs

Which votes got counted?

n It turns out that we also need to know which
votes were “counted”
n E.g. suppose there are five group members, A…E

and they vote:
n {[17,A] [19,B] [20,C] [200,D] [21,E]}

n But somehow the vote from D didn’t get through
and the maximum is picked as [21,E]

n We’ll need to also remember that the votes used
to make this decision were from {A,B,C,E}

3

What’s with the [t,pid] stuff?

n Lamport’s suggestion: use logical clocks
n Each process receives an update message
n Places it in an ordered queue
n And responds with a proposed time: [t,pid] using

its own process id for the time
n The update source takes the maximum

n Commit message says “commit at [t,pid]”
n Group members who’s votes were considered

deliver committed updates in timestamp order
n Group members who votes were not considered

discard the update and don’t do it, at all.

One message is lost…

Example
p

q

r

s

t

clienta
Proposed write…

clientb
Proposed write…

B: [0,p]

A: [0,s]

A: [0,t]

… and a third delayed for a long time

… another delayed for a little while

B: [1,s]

B: [1,t]

A: [1,r]

A: [1,p]

B: [0,r]

Timestamps seen by the
clients?

n A sees (in order):
n [0,p], [0,s], [1,p], [1,r]

n This is a write quorum (Q w=4)
n A picks [1,r] from {p,r,s} as the largest “time”

n B sees
n [0,r], [0,p], [1,t], [1,s]

n B picks [1,t] from {p,r,s,t} as the largest time.
n Note that [1,r] < [1,t], so A goes first

Where are the updates?

n Each member has a queue of pending,
uncommitted updates
n Even if a member crashes and restarts, it

remembers this pending queue

n Example: at process p the queue has
n {B: [0,p]}; {A: [1,p]}
n Neither can be delivered (acted upon) since

neither time is committed yet
n Right now, process p can only respond to reads

using the old value of the variable!

Example
p

q

r

s

t

clienta
Proposed write…

clientb
Proposed write…

Commit at [1,r]

Commit at [1,t] from {p,r,s,t}

Example
p

q

r

s

t

clienta
Proposed write…

clientb
Proposed write…

Commit at [1,r] from {p,r,s}

Commit at [1,t] from {p,r,s,t}

4

When are updates performed?

n In this example, A is supposed to go before B
but processes learn commit time for B first

n Look at two cases
n Pending queue at process P was

n {B: [0,p]}; {A: [1,p]}
n Pending queue at process T was

n {A: [0,t]}; {B: [1,t]}

n Now they learn commit time for B: [1,t]
n A reorders its queue: {A: [1,p]}, {B: [1,t]}
n B just notes the time: {A: [0,t]}; {B: [1,t]}

When are updates performed?

n After they learn commit time for B: [1,t]
n A reorders its queue: {A: [1,p]}, {B: [1,t]}
n B just notes the time: {A: [0,t]}; {B: [1,t]}

n Now they learn commit time for A: [1,r]
n A notes the time: {A: [1,r]}, {B: [1,t]}
n B just notes the time: {A: [1,r]};{B: [1,t]}

n … So both deliver committed messages from
the front of their respective queues, and use
the same update ordering

What if “my vote wasn’t used?”

n A process that had a pending update but
discovers it wasn’t used when computing the
maximum discards the pending update
request even though it committed.
n Issue is that perhaps this vote should have been

the largest one…
n Discarding the request won’t hurt: this replica will

lag the others, but a quorum read would always
“see” one of the updated copies!

Recovery from a crash

n So… to recover from a crash, a replica
n First recovers its queue of pending updates
n Next must learn the outcome of the

operation
n May need to contact Q r other replicas

n Checks to see if the operation committed
and if its own vote counted
n If so, applies the pending update
n If not, discards the pending update

Read requests received when
updates are pending wait…

n Suppose someone does a read while
there are pending, uncommitted
updates
n These must wait until those commit, abort,

or are discarded
n Otherwise a process could do an update,

then a read, and yet might not see its own
updated value

Why is this “safe”?

n Notice that a commit can only move a pending
update to a later time!
n This is why we discard a pending update if the vote wasn’t

counted when computing the commit time
n Otherwise that “ignored” vote might have been the

maximum value and could have determined the event
ordering… by discarding it we end up with an inconsistent
replica, but that doesn’t matter, since to do a read, we
always look at Qr replicas, and hence can tolerate an
inconsistent copy

n This is also why we can’t support incremental operations
(“add six to x”)

5

Why is this “safe”?

n So… a commit moves pending update towards the
end of the queue… e.g. towards the right…
n … and we keep the queue in sorted order
n Thus once a committed update reaches the front of the

queue, no update can be committed at an earlier time!
n Any “future” update gets a time later than any

pending update… hence goes on end of queue
n Cost? 3N messages per update unless a crash occurs

during the protocol, which can add to the cost

What about our rule for votes
that didn’t count?

n A and B only wait for Qw replies
n Suppose someone is “dropped” by initiator

n Their vote won’t have been counted… commit
won’t be sent to them

n This is why we remove those updates from
the corresponding queues even though the
operation committed
n The commit time that was used might violate our

ordering guarantee

Mile high: Why this works

n Everyone uses the same commit time
for any given update…
n … and can’t deliver an update unless the

associated [t,pid] value is the smallest
known, and is committed

n … hence updates occur in the same order
at all replicas

n There are many other solutions to the
same problem… this is just a “cute” one

Observations

n The protocol requires many messages to do
each update
n Could use IP multicast for first and last round

n But would need to add a reliability mechanism

n Commit messages must be reliably delivered
n Otherwise a process might be stuck with

uncommitted updates on the front of its “pending”
queue, hence unable to do other updates

Our protocol is a 3PC!

n This is because we might fail to get a
quorum of replies

n Only the update initiator “knows” the
outcome, because message loss and
timeouts are unpredictable

Risk of blocking

n We know that 2PC and 3PC can block in
face of certain patterns of failures
n Indeed FLP proves that any quorum write

protocol can block

n Thus states can arise in which our
group becomes inaccessible
n This is also a risk with dynamically formed

process groups, but the scenarios differ

6

Performance implications?

n This is a much slower protocol than the
virtual synchrony solutions
n With virtual synchrony we can read any group

member’s data…
n But lacks dynamic uniformity (safety) unless we ask for it

n Must read Q r copies (at least 2)
n A member can’t even “trust” its own replica!
n But has the dynamic uniformity property

n And a write is a 3PC touching Q w copies
n An incremental update needs 4 phases…

Performance implications?

n In experiments
n Virtual synchrony, using small

asynchronous messages in small groups
and packing them, reached 100,000’s of
multicasts per second

n Quorum updates run at 10s-100s in same
setup: 3 orders of magnitude slower

So why even consider them?

n Lamport uses this method in his Paxos
system, which implements lock-step
replication of components
n Called the “State Machine” approach
n Can be shown to achieve consensus as

defined in FLP, including safety property

n Castro and Liskov use Byzantine
Agreement for even greater robustness

Byzantine Quorums

n This is an extreme form of replication
n Robust against failures
n Tolerates Byzantine behavior by members

n Increasingly seen as a good choice
when compromises are simply
unacceptable

Typical approach?

n These use a quorum size of v N
n Think of the group as if it was arranged as

a square
n Any “column” is a read quorum
n Any “row” is a write quorum

n Then use Byzantine Agreement (not
3PC) to perform the updates or to do
the read

Costs? Benefits?

n The costs are very high
n Byzantine protocol is expensive

n And now we’re accessing vN members

n But the benefits are high too
n Robust against malicious group members
n Attacks who might change data on wire

n Accidental data corruption due to bugs
n Slow, but fast enough for many uses, like

replicating a database of security keys

7

Virtual synchrony

n Best option if performance is a key goal
n Can do a flush before acting on an

incoming multicast if the action will be
externally visible (if it “really matters”)

n But not robust against Byzantine failures

n Has been more successful in real-world
settings, because real-world puts such
high value on performance

State Machines

n Paxos system implements them, using a
quorum method
n In fact has many optimizations to squeeze more

performance out of the solution
n Still rather slow compared to virtual sync.

n But achieves “safe abcast” and for that, is
cheaper than abcast followed by flush
n Use it if dynamic uniformity is required in app.

n E.g. when service runs some external device

Take away?

n We can build groups in two ways
n With dynamic membership

n With static membership
n (the former can also emulate the latter)

n (the latter can be extended with B y z. Agreement)

n Protocols support group data replication
n Tradeoff between speed and robustness

n User must match choice to needs of the app.

