
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Virtual Synchrony

A powerful programming model!
Called virtual synchrony
It offers

Process groups with state transfer, automated
fault detection and membership reporting
Ordered reliable multicast, in several flavors
Extremely good performance

Why “virtual” synchrony?

What would a synchronous execution
look like?
In what ways is a “virtual” synchrony
execution not the same thing?

A synchronous execution

p

q

r

s

t

u

With true synchrony executions run in
genuine lock-step.

Virtual Synchrony at a glance

With virtual synchrony executions only
look “lock step” to the application

p

q

r

s

t

u

Virtual Synchrony at a glance

p

q

r

s

t

u

We use the weakest (hence fastest)
form of communication possible

2

Chances to “weaken” ordering

Suppose that any conflicting updates are
synchronized using some form of locking

Multicast sender will have mutual exclusion
Hence simply because we used locks, cbcast
delivers conflicting updates in order they were
performed!

If our system ever does see concurrent
multicasts… they must not have conflicted.
So it won’t matter if cbcast delivers them in
different orders at different recipients!

Causally ordered updates

Each thread corresponds to a different lock

In effect: red “events” never conflict with
green ones!

p

r

s

t
1

2

3

4

5

1

2

In general?

Replace “safe” (dynamic uniformity)
with a standard multicast when possible
Replace abcast with cbcast
Replace cbcast with fbcast

Unless replies are needed, don’t wait
for replies to a multicast

Why “virtual” synchrony?

The user sees what looks like a
synchronous execution

Simplifies the developer’s task

But the actual execution is rather
concurrent and asynchronous

Maximizes performance
Reduces risk that lock-step execution will
trigger correlated failures

Correlated failures
Why do we claim that virtual synchrony
makes these less likely?

Recall that many programs are buggy
Often these are Heisenbugs (order sensitive)

With lock-step execution each group member
sees group events in identical order

So all die in unison
With virtual synchrony orders differ

So an order-sensitive bug might only kill one
group member!

Programming with groups

Many systems just have one group
E.g. replicated bank servers
Cluster mimics one highly reliable server

But we can also use groups at finer
granularity

E.g. to replicate a shared data structure
Now one process might belong to many groups

A further reason that different processes
might see different inputs and event orders

3

Embedding groups into “tools”

We can design a groups API:
pg_join(), pg_leave(), cbcast()…

But we can also use groups to build
other higher level mechanisms

Distributed algorithms, like snapshot
Fault-tolerant request execution
Publish-subscribe

Distributed algorithms

Processes that might participate join an
appropriate group
Now the group view gives a simple
leader election rule

Everyone sees the same members, in the
same order, ranked by when they joined
Leader can be, e.g., the “oldest” process

Distributed algorithms

A group can easily solve consensus
Leader multicasts: “what’s your input”?
All reply: “Mine is 0. Mine is 1”
Initiator picks the most common value and
multicasts that: the “decision value”
If the leader fails, the new leader just
restarts the algorithm

Puzzle: Does FLP apply here?

Distributed algorithms

A group can easily do consistent
snapshot algorithm

Either use cbcast throughout system, or
build the algorithm over gbcast
Two phases:

Start snapshot: a first cbcast
Finished: a second cbcast, collect process
states and channel logs

Distributed algorithms: Summary

Leader election
Consensus and other forms of
agreement like voting
Snapshots, hence deadlock detection,
auditing, load balancing

More tools: fault-tolerance
Suppose that we want to offer clients “fault-
tolerant request execution”

We can replace a traditional service with a group
of members
Each request is assigned to a primary (ideally,
spread the work around) and a backup

Primary sends a “cc” of the response to the request to
the backup

Backup keeps a copy of the request and steps in
only if the primary crashes before replying

Sometimes called “coordinator/cohort” just to
distinguish from “primary/backup”

4

Publish / Subscribe

Goal is to support a simple API:
Publish(“topic”, message)
Subscribe(“topic”, event_hander)

We can just create a group for each
topic

Publish multicasts to the group
Subscribers are the members

Scalability warnings!

Many existing group communication systems
don’t scale incredibly well

E.g. JGroups, Ensemble, Spread
Group sizes limited to perhaps 50-75 members
And individual processes limited to joining perhaps
50-75 groups (Spread: see next slide)

Overheads soar as these sizes increase
Each group runs protocols oblivious of the others,
and this creates huge inefficiency

Publish / Subscribe issue?

We could have thousands of topics!
Too many to directly map topics to groups

Instead map topics to a smaller set of groups.
SPREAD system calls these “lightweight” groups
Mapping will result in inaccuracies… Filter
incoming messages to discard any not actually
destined to the receiver process

Cornell’s new QuickSilver system will instead
directly support immense numbers of groups

Other “toolkit” ideas

We could embed group communication
into a framework in a “transparent” way

Example: CORBA fault-tolerance
specification does lock-step replication of
deterministic components
The client simply can’t see failures

But the determinism assumption is painful, and
users have been unenthusiastic
And exposed to correlated crashes

Other similar ideas

There was some work on embedding
groups into programming languages

But many applications want to use them to
link programs coded in different languages
and systems
Hence an interesting curiosity but just a
curiosity

More work is needed on the whole issue

Existing toolkits: challenges

Tensions between threading and
ordering

We need concurrency (threads) for perf.
Yet we need to preserve the order in which
“events” are delivered

This poses a difficult balance for the
developers

5

Preserving order

Group Communication Subsystem: A library linked to the
application, perhaps with its own daemon processes

G1={p,q} m3 m4 G2={p,q,r}

Time →
application

p

q

r

m1 m2

m3 m4

The tradeoff

If we deliver these upcalls in separate
threads, concurrency increases but
order could be lost
If we deliver them as a list of event,
application receives events in order but
if it uses thread pools (think SEDA), the
order is lost

Solution used in Horus

This system
Delivered upcalls using an event model
Each event was numbered
User was free to

Run a single-threaded app
Use a SEDA model

Toolkit included an “enter/leave region in
order” synchronization primitive

Forced threads to enter in event-number order

Other toolkit “issues”

Does the toolkit distinguish members of a
group from clients of that group?

In Isis system, a client of a group was able to
multicast to it, with vsync properties
But only members received events

Does the system offer properties “across
group boundaries”?

For example, using cbcast in multiple groups

Features of major virtual
synchrony platforms

Isis: First and no longer widely used
But was perhaps the most successful; has
major roles in NYSE, Swiss Exchange,
French Air Traffic Control system (two
major subsystems of it), US AEGIS Naval
warship
Also was first to offer a publish-subscribe
interface that mapped topics to groups

Features of major virtual
synchrony platforms

Totem and Transis
Sibling projects, shortly after Isis
Totem (UCSB) went on to become Eternal
and was the basis of the CORBA fault-
tolerance standard
Transis (Hebrew University) became a
specialist in tolerating partitioning failures,
then explored link between vsync and FLP

6

Features of major virtual
synchrony platforms

Horus and Ensemble
Developed at Cornell: successors to Isis
Both focus on flexible protocol stack linked directly
into application address space

A stack is a pile of micro-protocols
Can assemble an optimized solution fitted to specific
needs of the application by plugging together “properties
this application requires”, lego-style
The system is optimized to reduce overheads of this
compositional style of protocol stack

Ensemble is relatively popular and supported by a
user community. Horus works well but is not
widely used.

Horus/Ensemble protocol stacks

Application belongs to process group

comm
nak
frag
mbrshp
fc

comm
comm
nak
frag

comm
nak
frag
mbrshp

parcld

comm
nak
frag
mbrshp
merge

totaltotal

Spread Toolkit

Developed at John Hopkins
Focused on a sort of “RISC” approach

Very simple architecture and system
Fairly fast, easy to use, rather popular

Supports one large group within which
user sees many small “lightweight”
subgroups that seem to be free-standing
Protocols implemented by Spread “agents”
that relay messages to apps

JGroups (part of JBoss)

Developed by Bela Ban
Implements group multicast tools

Virtual synchrony was on their “to do” list
But they have group views, multicast, weaker
forms of reliability

Impressive performance!
Very popular for Java community

Downloads from www.JGroups.org

Summary?
Role of a toolkit is to package commonly
used, popular functionality into simple API
and programming model
Group communication systems have been
more popular when offered in toolkits

If groups are embedded into programming
languages, we limit interoperability
If groups are used to transparently replicate
deterministic objects, we’re too inflexible

Many modern systems let you match the
protocol to your application’s requirements

