CS514: Intermediate Course
* in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

!.| Virtual Synchrony

= A powerful programming model!
= Called virtual synchrony

= It offers

= Process groups with state transfer, automated
fault detection and membership reporting

» Ordered reliable multicast, in several flavors
= Extremely good performance

3 Why “virtual” synchrony?

= What would a synchronous execution
look like?

= In what ways is a “virtual” synchrony
execution not the same thing?

!.’ A synchronous execution
=
Ak

= With frue synchrony executions run in
genuine lock-step.

r.

3 Virtual Synchrony at a glance

i \\///(

u

= With virtual synchrony executions only
look “lock step” to the application

!.| Virtual Synchrony at a glance

] [

= We use the weakest (hence fastest)
form of communication possible

5 Chances to “weaken” ordering

= Suppose that any conflicting updates are
synchronized using some form of locking
= Multicast sender will have mutual exclusion
= Hence simply because we used locks, cbcast
delivers conflicting updates in order they were
performed!
= If our system ever does see concurrent
multicasts... they must not have conflicted.
So it won't matter if chcast delivers them in
different orders at different recipients!

:.| Causally ordered updates

= Each thread corresponds to a different lock
@ ®
VN S avAAN
\[[@/ M\ X] \
V_/ NN Y/ \,é \
© ®

= In effect: red “events” never conflict with
green ones!

5 In general?

= Replace “safe” (dynamic uniformity)
with a standard multicast when possible

= Replace abcast with cbcast
= Replace cbcast with fbcast

= Unless replies are needed, don't wait
for replies to a multicast

:.’ Why “virtual” synchrony?

= The user sees what looks like a
synchronous execution
= Simplifies the developer’s task

= But the actual execution is rather
concurrent and asynchronous
= Maximizes performance

= Reduces risk that lock-step execution will
trigger correlated failures

Correlated failures

= Why do we claim that virtual synchrony
makes these less likely?
= Recall that many programs are buggy
= Often these are Heisenbugs (order sensitive)

= With lock-step execution each group member
sees group events in identical order
= So all die in unison

= With virtual synchrony orders differ

= S0 an order-sensitive bug might only kill one
group member!

:.| Programming with groups

= Many systems just have one group
= E.g. replicated bank servers
= Cluster mimics one highly reliable server
= But we can also use groups at finer
granularity
= E.g. to replicate a shared data structure
= Now one process might belong to many groups
= A further reason that different processes
might see different inputs and event orders

5 Embedding groups into “tools”

= We can design a groups API:
= pg_join(), pg_leave(), cbcast()...

= But we can also use groups to build
other higher level mechanisms
= Distributed algorithms, like snapshot
= Fault-tolerant request execution
= Publish-subscribe

:.| Distributed algorithms

= Processes that might participate join an
appropriate group

= Now the group view gives a simple
leader election rule

= Everyone sees the same members, in the
same order, ranked by when they joined

= Leader can be, e.g., the “oldest” process

. Distributed algorithms

= A group can easily solve consensus
= Leader multicasts: “what’s your input”?
= All reply: “*Mine is 0. Mineis 1”

= Initiator picks the most common value and
multicasts that: the “decision value”

= If the leader fails, the new leader just
restarts the algorithm

= Puzzle: Does FLP apply here?

:.’ Distributed algorithms

= A group can easily do consistent
snapshot algorithm
= Either use cbcast throughout system, or
build the algorithm over gbcast
= Two phases:
» Start snapshot: a first cbcast

= Finished: a second cbcast, collect process
states and channel logs

3 Distributed algorithms: Summary

= Leader election

= Consensus and other forms of
agreement like voting

= Snapshots, hence deadlock detection,
auditing, load balancing

More tools: fault-tolerance

= Suppose that we want to offer clients “fault-
tolerant request execution”
= We can replace a traditional service with a group
of members
= Each request is assigned to a primary (ideally,
spread the work around) and a backup

= Primary sends a “cc” of the response to the request to
the backup

= Backup keeps a copy of the request and steps in
only if the primary crashes before replying
= Sometimes called “coordinator/cohort” just to
distinguish from “primary/backup”

5 Publish / Subscribe

= Goal is to support a simple API:
= Publish(“topic”, message)
= Subscribe(“topic”, event_hander)
= We can just create a group for each
topic
= Publish multicasts to the group
= Subscribers are the members

:.| Scalability warnings!

= Many existing group communication systems
don't scale incredibly well
= E.g. JGroups, Ensemble, Spread
= Group sizes limited to perhaps 50-75 members
= And individual processes limited to joining perhaps
50-75 groups (Spread: see next slide)
= Overheads soar as these sizes increase

= Each group runs protocols oblivious of the others,
and this creates huge inefficiency

. Publish / Subscribe issue?

= We could have thousands of topics!
= Too many to directly map topics to groups
= Instead map topics to a smaller set of groups.
= SPREAD system calls these “lightweight” groups
= Mapping will result in inaccuracies... Filter
incoming messages to discard any not actually
destined to the receiver process
= Cornell’s new QuickSilver system will instead
directly support immense numbers of groups

Other “toolkit” ideas

= We could embed group communication
into a framework in a “transparent” way
= Example: CORBA fault-tolerance
specification does lock-step replication of
deterministic components
= The client simply can't see failures

= But the determinism assumption is painful, and
users have been unenthusiastic

= And exposed to correlated crashes

5 Other similar ideas

= There was some work on embedding
groups into programming languages
= But many applications want to use them to

link programs coded in different languages
and systems

= Hence an interesting curiosity but just a
curiosity

= More work is needed on the whole issue

:.| Existing toolkits: challenges

= Tensions between threading and
ordering
= We need concurrency (threads) for perf.
= Yet we need to preserve the order in which
“events” are delivered
= This poses a difficult balance for the
developers

. Preserving order

G;={p,q} m; my G={p,qr}

Time —
/ / / / application

Group Communication Subsystem. A library linked to the
application, perhaps with its own daemon processes

p @
PN 7
U @ @)

\

:.| The tradeoff

= If we deliver these upcalls in separate
threads, concurrency increases but
order could be lost

= If we deliver them as a list of event,
application receives events in order but
if it uses thread pools (think SEDA), the
order is lost

. Solution used in Horus

= This system
= Delivered upcalls using an event model
= Each event was numbered
= User was free to
= Run a single-threaded app
= Use a SEDA model
= Toolkit included an “enter/leave region in
order” synchronization primitive
= Forced threads to enter in event-number order

:.’ Other toolkit “issues”

= Does the toolkit distinguish members of a
group from clients of that group?

= In Isis system, a client of a group was able to
multicast to it, with vsync properties

= But only members received events

= Does the system offer properties “across
group boundaries”?
= For example, using cbcast in multiple groups

Features of major virtual

5 synchrony platforms

= Isis: First and no longer widely used

= But was perhaps the most successful; has
major roles in NYSE, Swiss Exchange,
French Air Traffic Control system (two
major subsystems of it), US AEGIS Naval
warship

= Also was first to offer a publish-subscribe
interface that mapped topics to groups

Features of major virtual

:.| synchrony platforms

= Totem and Transis
= Sibling projects, shortly after Isis
= Totem (UCSB) went on to become Eternal

and was the basis of the CORBA fault-
tolerance standard

= Transis (Hebrew University) became a
specialist in tolerating partitioning failures,
then explored link between vsync and FLP

Features of major virtual
synchrony platforms

= Horus and Ensemble
= Developed at Cornell: successors to Isis
= Both focus on flexible protocol stack linked directly
into application address space
« A stack is a pile of micro-protocols
= Can assemble an optimized solution fitted to speciﬁc
needs of the application bY plugging together “properties
this application requires”, lego-style
» The system is optimized to reduce overheads of this
compositional style of protocol stack
= Ensemble is relatively popular and supported by a
user community. Horus works well but is not
widely used.

:.| Horus/Ensemble protocol stacks

A

@cation belongs to process group)

ee8;
total 855
fo merge C} parcld
mbrshp mbrshp frag | mbrshp|
frag frag nak frag
nak nak comm | nak
comm comm comm

Spread Toolkit

= Developed at John Hopkins
= Focused on a sort of "RISC” approach
= Very simple architecture and system
» Fairly fast, easy to use, rather popular
= Supports one large group within which
user sees many small “lightweight”
subgroups that seem to be free-standing
= Protocols implemented by Spread “agents”
that relay messages to apps

JGroups (part of JBoss)

= Developed by Bela Ban

= Implements group multicast tools
= Virtual synchrony was on their “to do” list

= But they have group views, multicast, weaker
forms of reliability

= Impressive performance!
= Very popular for Java community

= Downloads from www.JGroups.org

Summary?

= Role of a toolkit is to package commonly
used, popular functionality into simple API
and programming model
= Group communication systems have been
more popular when offered in toolkits
= If groups are embedded into programming
languages, we limit interoperability
= If groups are used to transparently replicate
deterministic objects, we're too inflexible
= Many modern systems let you match the
protocol to your application’s requirements

