CS514: Intermediate Course
* in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

:.| Recap

= Our recipe for group communication:

= Group membership
= We solved this by building a fault-tolerant group
membership service
= Everyone who uses it sees the same group “views” in the
same order
= When it makes a mistake about a failure, we just
terminate the unfortunate victim!
= Fault-tolerant view-synchronous multicast

= Ordering mechanisms

3 Ordering: The missing element

= Our fault-tolerant protocol was

= FIFO ordered: messages from a single
sender are delivered in the order they were
sent, even if someone crashes

= View synchronous: everyone receives a
given message in the same group view

= This is the protocol we called fbcast

But we identified other options

= cbcast: If cbcast(a)—cbcast(b), deliver
a before b at common destinations

= abcast: Even if a and b are concurrent,
deliver in some agreed order at common
destinations

= gbcast: Deliver this message like a new
group view: agreed order w.r.t.
multicasts of all other flavors

3 Can we implement them?

= First look at cbcast
= Recall that this property was “like” fbcast
= The issue concerns the meaning of a
“single sender”
= With fbcast, a single sender is a single process

= With cbcast, we think about a single causal
thread of events that can span many processes

For example: p asks q to send a, then asks r to send
b. So a—b but a happens at q and b happens at r!

!.| Single updater

3
r
s
t

= If p is the only update source, the need
is a bit like the TCP “fifo” ordering

®@ @ @ @
1T N N Y N\
i NN X
W NN N

= fbcast is a good choice for this case

3 Causally ordered updates

= Events occur on a “causal thread” but
multicasts have different senders

: ® ®
AN TN\ @ N\

T\ N\ & 7
VA AN N N N
@ ®

:.| Reminder: Who needs it?

= The issue is that with Web Services and
CORBA, you might not even “know” that you
are invoking a remote object

= If it does a multicast for you, that event
seems like something you did... but may have
been issued by some other process

= If we use cbcast, messages will be delivered
in the order they were sent

3 Causally ordered updates

= Events occur on a “causal thread” but

Perhaps Now we'r| T gets another request. This one came
remote| process p. | from p “indirectly” via s... but the idea is
i T finishes | exactly the same. P is really running a
tha| operation invg Single causal thread that weaves through
a response t{ the system, visiting various objects (and
Now t waits fo| hence the processes that own them)

~un - o

N
VN\L1 \

:.’ How to implement it?

= Within a single group, the easiest
option is to include a vector timestamp
in the header of the message
= Only increment the VT when sending
= Send these “labeled” messages with fbcast
= Delay a received message if a causally
prior message hasn't been seen yet

3 Causally ordered updates

= Example: messages from p and s arrive
out of order at t

VT(b)=[1.0.0.11
b cis early: VT(c) = [1,0,1,1] but
r 4 When b arrives, we can deliver
S
t

H \0[/ \. AN g, both it and message c, in order
o/

VT(a) = [0,0,0,1]

Causally ordered updates

= This works even with multiple causal threads.

o @ ®

SR RN SAVATAN

LT NNl WX

QT B AN S AV A
@ @

= Concurrent messages might be delivered to
different receivers in different orders
= Example: green 4 and red 1 are concurrent

3 Causally ordered updates

= Sorting based on vector timestamp

[1,00,1] i 121,131

POV TN 7 VT 7 I\

IRV RN Y/ .S
UV /7 NANT/NT N

[0,00,1] [1,0,1",1] [1,0,1,2] [11,1,3]

= In this run, everything can be delivered
immediately on arrival

:.| Causally ordered updates

= Suppose p’s message [1,0,0,1] is “delayed”

[1,0,0,1] L1 [21,1,3]

POV T TN 7 VT 7 I\

N AN AT X]
VA AN VNN

[0,0,0,1] [1,0,{,1] [1,0,1,2] [1,1,1,3]

= When t receives message [1,0,1,1], t can “see” that
one message from p is late and can delay deliver of
s's message until p’s prior message arrives!

3 Other uses for cbcast?

= The protocol is very helpful in systems
that use locking for synchronization
= Gaining a lock gives some process mutual
exclusion
= Then it can send updates to the locked
variable or replicated data

= Cbcast will maintain the update order

:.’ Cost of cbcast?

= This protocol is very cheap!
= It requires one phase to get the data from the
sender to the receiver
= Receiver can deliver instantly
= Same cost as an IP multicast or a set of UDP sends
= Imposes a small header and a small garbage
collection overhead

= Nobody is likely to notice! And we can often omit or
compress the header

3 Better and better

= Suppose some process sends a bunch
of small updates using fbcast or cbcast
= Pack them into a single bigger message
= Benefit: message costs are dominated by
the system call and almost unrelated to
size, at least until we get big enough to
require fragmentation!

!.| Causally ordered updates

= A bursty application

Can pack into one large
message and amortize
overheads

| | W\
U A NN W\ Y AN
N

5 Screaming performance!

= This type of packing can give incredible
performance
= Sender is able to send a small message, then
“move on” to the next task (like sending a TCP
message without waiting for it to get through)
= Sender’s “platform” packs them together
= Receiver unpacks on arrival
= Can send hundreds of thousands of
asynchronous updates per second in this
mode!

:.| Snapshots with cbcast

= Send two rounds of cbcast
= Round 1: “Start a snapshot”
= Receivers make a checkpoint
= And they start recording incoming messages
= Then say “"OK”
= Round 2: "Done”
= They send back their checkpoints and logs

= Thought question: why does this work?

. What about abcast?

= Abcast puts messages into a single
agreed upon order even if two
multicasts are sent concurrently
= fbcast and cbcast can deliver messages in
different orders at different receivers

= Notice that this disordered delivery
wouldnt matter in the cases we discussed!

:.’ Many options...

= Literature has at least a dozen abcast
protocols, and some are causal too

= Easiest just uses a token
= To send an abcast, either pass it to the token
holder, or request the token
= Token holder can increment a counter and put it
in header of message
= Only need the counter if token can move...
= Delay a message until it can be delivered in order

5 What about gbcast?

= This is a very costly protocol
= Must be ordered wrt all other event types,
including fbcast, cbcast, abcast, view changes,
other gbcasts
= Used to change a security key or even modify the
protocol stack at runtime
« Like changing the engines on a jet while it is flying! Not
a common event
= Implement with a fusion of flush protocol and
abcast. Requires at least 2 phases

:.| Life of a multicast

= The sender sends it...

= The protocol moves it to the right
machines, deals with failures, puts it in
order, finally delivers it
= All of this is hidden from the real user

= Now the application “gets” the multicast
and could send replies point-to-point

3 Should we ask for replies?

= Synchronous versus asynchronous

= A “synchronous” operation is RPC-like
» We need one or more replies from the
processes that we invoke
= An “asynchronous” operation is a multicast
with no replies or feedback to the caller

= I.e. “add flight AF 1981 to the list of active
flights in sector D-9”. No reply is needed

:.| Should we ask for replies?

= Synchronous cases (one or more replies)
won't batch messages
= Exception: sender could be multithreaded

= But this is sort of rare since hackers prefer not to

work with concurrent threads unless they really
have to

= Waiting for all replies is worst since slowest
receiver limits the whole system

= S0 speed is greatly reduced...

3 Life of a multicast

DN
NN

Sender is waiting

7 7
Synchronous: \ \ /
sender does wait U 7

Asynchronous:
sender doesn't U

wait for replies

Voo

for replies

Asynchronous multicast:
Pros and cons

= Asynchronous multicast allows higher speeds

= The system can batch up multiple messages into
one big message, as we saw earlier

= And the sender won't be limited by the speed of
the network and the recievers
= This makes asynchronous multicast very
popular in real systems
= But the sender can get “way ahead” and this
can cause confusion if it then fails
= Multicasts still in the channels can be lost

From the outside
a viewer might E

assume these
were all delivered

If a crash occurs,
messages are
delivered to all or
none of the |

destinations

!.| Remedies for confusion

= Insight is that these red multicasts were
unstable

= If we flush the channels and wait until
they have been delivered (become stable),
the issue is eliminated

= Users find this easy to understand because
file systems work the same way

= File I/O is asynchronous through the buffer
pool... must use fsync to force writes to disk

3 Asynchronous confusion...

Flush protocol runs
here, pushes data
through the channels

Application
invokes flush, but E

only when it is |
about to talk to
the outside world

:.| Limits to asynchrony

= At any rate, most systems /imit the number of
asynchronous multicasts that are running
simultaneously
= Issue is that otherwise, sender can get arbitrarily
far ahead of receivers
= A few messages is one thing... millions is another

= S0 most systems allow a few asynchronous
messages at a time, but then force new multicasts
to wait for some old ones to finish

= Very similar to TCP window idea

Picking between synchronous

3 and asynchronous multicast

= With synchronous multicast we can “ask” the
receivers to do something
= Please search the telephone book
= With k members at the time of reception, the
group member i searches the i'th part of the book
(dividing it into k parts)
= Each reply has 1/kth of the answer!
= But we need to wait for the answers
= This is a shame if we didn't actually need answers

:.’ A range of synchrony levels

= A platform usually offers multiple options

= Wait for k replies, for some specified k > 0.
Waiting for no replies: asynchronous

= Wait for “all” to reply
= When we say “all”:
= This means “one reply from each member in the
view at the time of delivery”
= If someone gets the message but then fails,
obviously, we should stop waiting for a reply....

3 Recap

= We've got a range of ordered multicast
primitives
= Two (fbcast, cbcast) have low cost
= Two (abcast, gbcast) are more ordered but
more costly
= And we can use them asynchronously
or synchronously

= Now touch some “esoteric” issues...

!.| Orphaned messages

= With all of these protocols a failure can
leave messages “orphaned”

= E.g. a—b, but after failure a has been
completely lost and someone still has a
copy of b (presumably delayed)

= Similar issue can arise with abcast

= Modify flush protocol to discard such
messages

5 Dynamic uniformity (“safe”)

= Suppose that process p receives
message a, delivers is, then fails
= Application program may have done
something, like “issue cash from the
machine”
= Now system could “lose” a message
after the failure

= Nobody else will see this message

:.| Dynamic uniformity (“safe”)

= We say that a multicast is “safe” if a message
delivered to any process will be delivered to
all processes (unless they crash first)

= To guarantee this for every multicast is
expensive
= Requires two phase protocol
= First make sure that everyone has a copy
= Only then start to deliver copies

. Is this form of safety needed?

= Perhaps not:
= Many actions only impact the “internal”
state of a system
= Like reports of load, updates to variables
employed by algorithm, etc
= Relatively few multicasts have external visibility
= We only need dynamic uniformity when
something will be visible outside the
system

:.’ Is this form of safety needed?

= Moreover, can easily hack around issue
= The same flush primitive we mentioned
earlier can solve this problem
= Just call it when you need to take an
external action
= Seems unnecessary to provide such a
costly property for every multicast when
there is such a simple alternative

Communication from a client

1 to a group

= Some communication occurs entirely
within a group

= But other requests come from outside
(from a “client”)

= What issues does this raise?

Communication from a client

:.| to a group

= It turns out that we can implement client-to-
group multicast fairly easily
= Either hand the request off to a member, who
does it for you. Involves a small delay
= Or cache the membership and label the multicast
with the view in which it was sent

= Some trickiness when view is changing just at this
moment... book explains how it can be handled... at
worst, client has to retry

= But multicast goes directly to the members... no delay

: Wrapup

= We've seen how this stuff works

= Hopefully, someone else will implement it
for you and you'll use it via a library!

= Spread and Ensemble are examples
= What are the pros and cons?

= Pro: a powerful abstraction

= Con: not trivial to understand or use

:.| Arguments for “platform support”

= ... sometimes, GCS is found in the O/S

= In IBM Websphere, virtual synchrony is
used in a replication package

= In Microsoft Windows Clusters, group
communication is employed within the
cluster management technology

= But not often visible to end user
= Considered a “dangerously powerful tool”

. Take-aways?

= We can implement very high
performance multicast
= Virtual synchrony model
= Incredible asynchronous throughput
= Ordering matched to the needs of app.
= And many vendors have done so

= But developers aren't able to access
these primitives (for now)

