
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Recap

Our recipe for group communication:
Group membership

We solved this by building a fault-tolerant group
membership service
Everyone who uses it sees the same group “views” in the
same order
When it makes a mistake about a failure, we just
terminate the unfortunate victim!

Fault-tolerant view-synchronous multicast
Ordering mechanisms

Ordering: The missing element

Our fault-tolerant protocol was
FIFO ordered: messages from a single
sender are delivered in the order they were
sent, even if someone crashes
View synchronous: everyone receives a
given message in the same group view

This is the protocol we called fbcast

But we identified other options

cbcast: If cbcast(a)→cbcast(b), deliver
a before b at common destinations
abcast: Even if a and b are concurrent,
deliver in some agreed order at common
destinations
gbcast: Deliver this message like a new
group view: agreed order w.r.t.
multicasts of all other flavors

Can we implement them?

First look at cbcast
Recall that this property was “like” fbcast
The issue concerns the meaning of a
“single sender”

With fbcast, a single sender is a single process
With cbcast, we think about a single causal
thread of events that can span many processes

For example: p asks q to send a, then asks r to send
b. So a→b but a happens at q and b happens at r!

Single updater

If p is the only update source, the need
is a bit like the TCP “fifo” ordering

fbcast is a good choice for this case

p

r
s
t

1 2 3 4

2

Causally ordered updates

Events occur on a “causal thread” but
multicasts have different senders

p

r
s
t

1

2

3

4

5

Reminder: Who needs it?

The issue is that with Web Services and
CORBA, you might not even “know” that you
are invoking a remote object
If it does a multicast for you, that event
seems like something you did… but may have
been issued by some other process
If we use cbcast, messages will be delivered
in the order they were sent

Causally ordered updates

Events occur on a “causal thread” but
multicasts have different senders

p

r
s
t

1

2

3

4

5

Perhaps p invoked a
remote operation

implemented by some
other object here…

The process corresponding to
that object is “t” and, while

doing the operation, it sent a
multicast

Now we’re back in
process p. The remote
operation has returned

and p resumes computing
T finishes whatever the

operation involved and sends
a response to the invoker.

Now t waits for other requests

T gets another request. This one came
from p “indirectly” via s… but the idea is
exactly the same. P is really running a

single causal thread that weaves through
the system, visiting various objects (and

hence the processes that own them)

How to implement it?

Within a single group, the easiest
option is to include a vector timestamp
in the header of the message

Only increment the VT when sending
Send these “labeled” messages with fbcast

Delay a received message if a causally
prior message hasn’t been seen yet

Causally ordered updates

Example: messages from p and s arrive
out of order at t

p

r
s
t

VT(a) = [0,0,0,1]

VT(b)=[1,0,0,1]

VT(c) = [1,0,1,1]

c is early: VT(c) = [1,0,1,1] but
VT(t)=[0,0,0,1]: clearly we are
missing one message from sWhen b arrives, we can deliver
both it and message c, in order

Causally ordered updates

This works even with multiple causal threads.

Concurrent messages might be delivered to
different receivers in different orders

Example: green 4 and red 1 are concurrent

p

r

s

t
1

2

3

4

5

1

2

3

Causally ordered updates

Sorting based on vector timestamp

In this run, everything can be delivered
immediately on arrival

p

r

s

t
[0,0,0,1]

[1,0,0,1]

[1,0,1,1]

[1,1,1,1]

[1,0,1,2] [1,1,1,3]

[2,1,1,3]

Causally ordered updates

Suppose p’s message [1,0,0,1] is “delayed”

When t receives message [1,0,1,1], t can “see” that
one message from p is late and can delay deliver of
s’s message until p’s prior message arrives!

p

r

s

t
[0,0,0,1]

[1,0,0,1]

[1,0,1,1]

[1,1,1,1]

[1,0,1,2] [1,1,1,3]

[2,1,1,3]

Other uses for cbcast?

The protocol is very helpful in systems
that use locking for synchronization

Gaining a lock gives some process mutual
exclusion
Then it can send updates to the locked
variable or replicated data

Cbcast will maintain the update order

Cost of cbcast?

This protocol is very cheap!
It requires one phase to get the data from the
sender to the receiver
Receiver can deliver instantly

Same cost as an IP multicast or a set of UDP sends

Imposes a small header and a small garbage
collection overhead

Nobody is likely to notice! And we can often omit or
compress the header

Better and better

Suppose some process sends a bunch
of small updates using fbcast or cbcast

Pack them into a single bigger message
Benefit: message costs are dominated by
the system call and almost unrelated to
size, at least until we get big enough to
require fragmentation!

Causally ordered updates

A bursty application

p

r
s
t

Can pack into one large
message and amortize

overheads

4

ScreamingScreaming performance!

This type of packing can give incredible
performance

Sender is able to send a small message, then
“move on” to the next task (like sending a TCP
message without waiting for it to get through)
Sender’s “platform” packs them together
Receiver unpacks on arrival

Can send hundreds of thousands of
asynchronous updates per second in this
mode!

Snapshots with cbcast

Send two rounds of cbcast
Round 1: “Start a snapshot”

Receivers make a checkpoint
And they start recording incoming messages
Then say “OK”

Round 2: “Done”
They send back their checkpoints and logs

Thought question: why does this work?

What about abcast?

Abcast puts messages into a single
agreed upon order even if two
multicasts are sent concurrently

fbcast and cbcast can deliver messages in
different orders at different receivers
Notice that this disordered delivery
wouldn’t matter in the cases we discussed!

Many options…

Literature has at least a dozen abcast
protocols, and some are causal too
Easiest just uses a token

To send an abcast, either pass it to the token
holder, or request the token
Token holder can increment a counter and put it
in header of message

Only need the counter if token can move…
Delay a message until it can be delivered in order

What about gbcast?

This is a very costly protocol
Must be ordered wrt all other event types,
including fbcast, cbcast, abcast, view changes,
other gbcasts
Used to change a security key or even modify the
protocol stack at runtime

Like changing the engines on a jet while it is flying! Not
a common event

Implement with a fusion of flush protocol and
abcast. Requires at least 2 phases

Life of a multicast

The sender sends it…
The protocol moves it to the right
machines, deals with failures, puts it in
order, finally delivers it

All of this is hidden from the real user

Now the application “gets” the multicast
and could send replies point-to-point

5

Should we ask for replies?

Synchronous versus asynchronous
A “synchronous” operation is RPC-like

We need one or more replies from the
processes that we invoke

An “asynchronous” operation is a multicast
with no replies or feedback to the caller

I.e. “add flight AF 1981 to the list of active
flights in sector D-9”. No reply is needed

Should we ask for replies?

Synchronous cases (one or more replies)
won’t batch messages

Exception: sender could be multithreaded
But this is sort of rare since hackers prefer not to
work with concurrent threads unless they really
have to

Waiting for all replies is worst since slowest
receiver limits the whole system
So speed is greatly reduced…

Life of a multicast

Asynchronous:
sender doesn’t
wait for replies

Synchronous:
sender does wait

for replies

Sender doesn’t pause

Sender is waiting

Asynchronous multicast:
Pros and cons

Asynchronous multicast allows higher speeds
The system can batch up multiple messages into
one big message, as we saw earlier
And the sender won’t be limited by the speed of
the network and the recievers

This makes asynchronous multicast very
popular in real systems
But the sender can get “way ahead” and this
can cause confusion if it then fails

Multicasts still in the channels can be lost

Asynchronous confusion…

From the outside
a viewer might
assume these

were all delivered

If a crash occurs,
messages are

delivered to all or
none of the
destinations

My
order is
gone!

OK, my
order has

been
placed

Remedies for confusion

Insight is that these red multicasts were
unstable

If we flush the channels and wait until
they have been delivered (become stable),
the issue is eliminated
Users find this easy to understand because
file systems work the same way

File I/O is asynchronous through the buffer
pool… must use fsync to force writes to disk

6

Asynchronous confusion…

Application
invokes flush, but

only when it is
about to talk to

the outside world

Flush protocol runs
here, pushes data

through the channels

Limits to asynchrony

At any rate, most systems limit the number of
asynchronous multicasts that are running
simultaneously

Issue is that otherwise, sender can get arbitrarily
far ahead of receivers
A few messages is one thing… millions is another
So most systems allow a few asynchronous
messages at a time, but then force new multicasts
to wait for some old ones to finish
Very similar to TCP window idea

Picking between synchronous
and asynchronous multicast

With synchronous multicast we can “ask” the
receivers to do something

Please search the telephone book
With k members at the time of reception, the
group member i searches the i’th part of the book
(dividing it into k parts)
Each reply has 1/kth of the answer!

But we need to wait for the answers
This is a shame if we didn’t actually need answers

A range of synchrony levels

A platform usually offers multiple options
Wait for k replies, for some specified k ≥ 0.
Waiting for no replies: asynchronous
Wait for “all” to reply

When we say “all”:
This means “one reply from each member in the
view at the time of delivery”
If someone gets the message but then fails,
obviously, we should stop waiting for a reply….

Recap

We’ve got a range of ordered multicast
primitives

Two (fbcast, cbcast) have low cost
Two (abcast, gbcast) are more ordered but
more costly

And we can use them asynchronously
or synchronously
Now touch some “esoteric” issues…

Orphaned messages

With all of these protocols a failure can
leave messages “orphaned”

E.g. a→b, but after failure a has been
completely lost and someone still has a
copy of b (presumably delayed)
Similar issue can arise with abcast

Modify flush protocol to discard such
messages

7

Dynamic uniformity (“safe”)

Suppose that process p receives
message a, delivers is, then fails

Application program may have done
something, like “issue cash from the
machine”

Now system could “lose” a message
after the failure

Nobody else will see this message

Dynamic uniformity (“safe”)

We say that a multicast is “safe” if a message
delivered to any process will be delivered to
all processes (unless they crash first)
To guarantee this for every multicast is
expensive

Requires two phase protocol
First make sure that everyone has a copy
Only then start to deliver copies

This is quite slow!!!!!

Is this form of safety needed?

Perhaps not:
Many actions only impact the “internal”
state of a system

Like reports of load, updates to variables
employed by algorithm, etc
Relatively few multicasts have external visibility

We only need dynamic uniformity when
something will be visible outside the
system

Is this form of safety needed?

Moreover, can easily hack around issue
The same flush primitive we mentioned
earlier can solve this problem
Just call it when you need to take an
external action

Seems unnecessary to provide such a
costly property for every multicast when
there is such a simple alternative

Communication from a client
to a group

Some communication occurs entirely
within a group
But other requests come from outside
(from a “client”)
What issues does this raise?

Communication from a client
to a group

It turns out that we can implement client-to-
group multicast fairly easily

Either hand the request off to a member, who
does it for you. Involves a small delay
Or cache the membership and label the multicast
with the view in which it was sent

Some trickiness when view is changing just at this
moment… book explains how it can be handled… at
worst, client has to retry
But multicast goes directly to the members… no delay

8

Wrapup

We’ve seen how this stuff works
Hopefully, someone else will implement it
for you and you’ll use it via a library!
Spread and Ensemble are examples

What are the pros and cons?
Pro: a powerful abstraction
Con: not trivial to understand or use

Arguments for “platform support”

… sometimes, GCS is found in the O/S
In IBM Websphere, virtual synchrony is
used in a replication package
In Microsoft Windows Clusters, group
communication is employed within the
cluster management technology

But not often visible to end user
Considered a “dangerously powerful tool”

Take-aways?

We can implement very high
performance multicast

Virtual synchrony model
Incredible asynchronous throughput
Ordering matched to the needs of app.

And many vendors have done so
But developers aren’t able to access
these primitives (for now)

