
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Replication

n A fundamental concept with many uses
n If we can solve this core problem, we can apply

the solution in many settings

n Replication is a basic primitive… But one
missing in most development toolkits
n We find replication mechanisms inside the

operating system (e.g. IBM WebSphere uses
replication, as does Microsoft’s Windows
Clustering technology…)

n End-users often given weaker solutions (pub-sub)

Uses of replication

n Replicate data or a service for high availability
n Replicate data so that group members can

share loads and improve scalability
n Replicate locking or synchronization state
n Replicate membership information in a data

center so that we can route requests
n Replicate management information or

parameters to tune performance

Who “does” the replication?

n We think of replication as happening
inside groups
n Could be a group of identical components
n Or just a group of processes that asked to

join in order to replicate a data structure
n Members might be different programs...

n Sometimes we know who might be a
replica ahead of time (“static model”),
sometimes not (“dynamic model”)

Two replication models

Static membership

Dynamic membership

p
q
r
s
t

p
q
r
s

t

Issues raised?

Static model

n Often only a subset of the
“replicas” are running

n Need to agree on order of
concurrent updates

n Must deal with inconsistency
in replicas that were down
for a while but now have
recovered

Dynamic model

n Membership changes as
members join/fail/leave
n “Report” view changes
n How to detect failure?
n How to initialize replica

(joining member)?
n Need to agree on order of

concurrent updates
n Normally, failed members

replaced by other processes

2

Further issues raised

n Does choice of model
n Impact performance?
n Impact platform complexity?
n Impact system-wide design philosophy,

e.g. degree of use of end-to-end ideas?

Let’s focus on update ordering

n We want to
n Replicate data
n Update it while accessing it

n What sorts of issues must be
addressed?

Drill down: Life of a group

p
q
r
s
t

Q does an update. It needs to
reach the three members

u0

u1

Initial group
membership is {r, s, t}Now s goes offline for a while. Maybe it crashed

Here, two pdates occur concurrently: r sees u0
followed by u1, but t sees u1 first, then u0. Process
s is still offline; it sees neither. This illustrates two

issues: update order and group membership

If p tries to “reliably” multicast to s, it
won’t get an ack and will wait indefinitely.
But how can p be sure that s has failed? If

p is wrong, s will be missing an update!

Now s is back online and
presumably should receive the

update q is sending.

Here we see the update ordering issue again
in a “pure” form. Which came first, p’s

update or the one from q?

Questions to ask about order

n Who should receive an update?
n What update ordering to use?
n How expensive is the ordering

property?

Questions to ask about order

n Delivery order for concurrent updates
n Issue is more subtle than it looks!
n We can fix a system-wide order, but…

n Sometimes nobody notices out of order delivery
n System-wide ordering is expensive

n If we care about speed we may need to look
closely at cost of ordering

Ordering example

n System replicates variables x, y
n Process p sends “x = x/2”
n Process q sends “x = 83”
n Process r sends “y = 17”
n Process s sends “z = x/y”

n To what degree is ordering needed?

3

Ordering example

n x=x/2 x=83
n These clearly “conflict”

n If we execute x=x/2 first, then x=83, x will
have value 83.

n In opposite order, x is left equal to 41.5

Ordering example

n x=x/2 y=17
n These don’t seem to conflict

n After the fact, nobody can tell what order
they were performed in

Ordering example

n z=x/y
n This conflicts with updates to x, updates

to y and with other updates to z

Commutativity

n We say that operations “commute” if
the final effect on some system is the
same even if the order of those
operations is swapped

n In general, a system worried about
ordering concurrent events need not
worry if the events commute

Single updater

n In many systems, there is only one process
that can update a given type of data
n For example, the variable might be “sensor

values” for a temperature sensor
n Only the process monitoring the sensor does

updates, although perhaps many processes want
to read the data and we replicate it to exploit
parallelism

n Here the only “ordering” that matters is the FIFO
ordering of the updates emitted by that process

Single updater

n If p is the only update source, the need
is a bit like the TCP “fifo” ordering

p

r
s
t

4

Mutual exclusion

n Another important case we’ll study
closely

n Arises in systems that use locks to
control access to shared data
n This is very common, for example in

“transactional” systems (we’ll discuss them
next week)

n Very often without locks, a system rapidly
becomes corrupted

Mutual exclusion

n Suppose that before performing
conflicting operations, processes must
lock the variables

n This means that there will never be any
true concurrency

n And it simplifies our ordering
requirement

Mutual exclusion

n Dark blue when holding the lock

n How is this case similar to “FIFO” with
one sender? How does it differ?

p
q
r
s
t

Mutual exclusion

n Are these updates in “FIFO” order?
n No, the sender isn’t always the same
n But yes in the sense that there is a unique

path through the system (corresponding to
the lock) and the updates are ordered
along that path

n Here updates are ordered by Lamport’s
happened before relation: →

Types of ordering we’ve seen

n Deliver updates in an order matching the
FIFO order in which they were sent

n Deliver updates in an order matching the →
order in which they were sent

n For conflicting concurrent updates, pick an
order and use that order at all replicas

n Deliver an update to all members of a group
according to “membership view” determined
by ordering updates wrt view changes

cheapest

More
costly

Most
costly

Still
cheap

Types of ordering we’ve seen

n Deliver updates in an order matching the
FIFO order in which they were sent

n Deliver updates in an order matching the →
order in which they were sent

n For conflicting concurrent updates, pick an
order and use that order at all replicas

n Deliver an update to all members of a group
according to “membership view” determined
by ordering updates wrt view changes

fbcast

abcast

gbcast

cbcast

5

Now continue to “drill down”

n We drilled down on ordering
n But what about failure?

p
q
r
s
t

What makes it hard?

n Detecting a failure is very tricky
n Network can lose messages…
n … a machine can be briefly disconnected

from the network
n … or could experience a brief overload

causing it to run slow, or ignore incoming
messages, or “freeze up”

n Are these transient problems “failures”?

Transient versus real failures

n A real failure persists long enough so
that the system has no choice except to
move on
n It may take over some roles from failed

process (a backup could become primary)
n Although the primary might recover, it

won’t be the primary server anymore!
n A transient failure repairs itself before

irrevocable compensating events occur

Are there any “real” failures?

n This leads to a view that failure isn’t
absolute
n In fact we can’t distinguish a failed

machine from one that is simply not
responding

n And this is fundamental

n Are there options other than true failure
detection?

Options for coping with faults

n One idea is to build a system so that if
a majority of processes is running, the
system can continue to run

n This leads to “quorum” solutions
p
q
r
s
t

Static group of 3 could have a
quorum size of 2

Options for coping with faults

n Another approach lets the group
“manage” its membership dynamically

n We do need a quorum vote when
membership changes… but not for read
and write operations

p
q
r
s

t
Membership change: t joins

Membership change: s fails

6

Options for coping with faults

n We also need to deal with processes
that join (or recover and rejoin) a group

n This involves not just a membership
change but also a “state transfer”
n Used to initialize replicated variables

p
q
r
s

t

When t joins, it won’t know the current value
of the replicated variable. State transfer used

to initialize it: a form of checkpoint/restart

Types of ordering we’ve seen

n Order of an update relative to a
membership change
n When process s crashed, p no longer

needed to wait for it to acknowledge
updates

n When s recovers, p must again send it
updates. And it needs to fix any data that
was updated while it was down

Peek ahead in CS514

n We’ll build solutions to these problems
n One way: quorum protocols + 2PC

n Group members are a subset of some list
n Read and update quorums must overlap. For

example, read operation “visits” 2 members;
updates “visits” N-1 members

n 2PC needed as part of the update protocol
n Second way: use quorum methods only to

manage “group view” membership
n Enables high-speed multicast protocols and

cheaper reads

Recommended readings

n In the textbook, we’re at the beginning
of Part III (Chapter 14)

n But transactional model is covered in
Chapters 6 and 22

n For next week will focus on that
material

