
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Applications of these ideas

Over the past three weeks we’ve heard about
Transactions
Logical time, consistent cuts
Distributed checkpoint mechanisms
Agreement protocols, such as 2PC and 3PC

Before we drill down and learn more
mechanisms like these… what good are these
things?

Applications of these ideas

Today, we’ll review some practical
applications of the mechanisms we’ve
studied

Each is representative of a class
Goal is to illustrate the wide scope of these
mechanisms, their power, and the ways
you might use them in your own work

Specific topics we’ll cover
Transactions on
multiple servers
Auditing a system
Detecting deadlocks
Fault-tolerance in a
long-running eScience
application

Distributed garbage
collection
Rebalancing objects in a
cluster
Computing a good
routing structure
Migrating tasks and TCP
connections from server
to server

Solutions “inspired” by paradigms

The solutions we arrive at won’t always
use the earlier protocol in a literal way
Think of “paradigms” or “templates”

When they match a problem…
… you can specialize them to create a good
solution

Let’s start with 2PC and transactions

The problem:
Some applications perform operations on
multiple databases
We would like a guarantee that either all
the databases get updated, or none does

The relevant paradigm? 2PC

2

Problem: Pictorial version

Goal? Either p succeeds, and both lists get
updated, or something fails and neither does

p

Employees
database

Coffee
fund

Create new
employee

Add to 3rd-floor
coffee fund

Issues?

P could crash part way through…
… a database could throw an exception,
e.g. “invalid SSN” or “duplicate record”
… a database could crash, then restart,
and may have “forgotten” uncommitted
updates (presumed abort)

2PC is a good match!

Adopt the view that each database
votes on its willingness to commit

Until the commit actually occurs, update is
considered temporary
In fact, database is permitted to discard a
pending update (covers crash/restart case)

2PC covers all of these cases

Solution

P runs the transactions, but warns
databases that these are part of a
transaction on multiple databases

They need to retain locks & logs

When finished, run a 2PC protocol
Until they vote “ok” a database can abort

2PC decides outcome and informs them

Low availability?

One concern: we know that 2PC blocks
The failure scenario isn’t all that rare

Options?
Could use 3PC to reduce this risk, but will
pay a cost on every transaction
Or just accept the risk
Can eliminate the risk with special
hardware but may pay a fortune!

Next example: Auditing

Our goal is to “audit” a system
Involves producing a summary of the state
Should look as if system was idle

Our options?
Freeze the whole system, then snapshot
the state. This is very disruptive
Or could use the Chandy/Lamport
“consistent snapshot” algorithm

3

Auditing

$875,221,117.17$1,241,761,251.23

LiabilitiesAssets

Uses for auditing
In a bank, may be the only practical way to
understand “institutional risk”

Need to capture state at some instant in time. If
branches report status at closing time, a bank that
operates world-wide gets inconsistent answers!

In a security-conscious system, might audit to
try and identify source of a leak
In a hospital, want ability to find out which
people examined which records
In an airline, might want to know about
maintenance needs, spare parts inventory

Practical worries

Snapshot won’t occur at a point in real time
Could be noticeable to certain kinds of auditors
In some situations only a truly instantaneous audit
can be accepted, but this isn’t common

What belongs in the snapshot?
Local states… but handling messages in transit
can be very hard to do
With Web Services, some forms of remote server
calls are nearly transparent!

Pros and cons
Implementing the algorithm is only practical

If we can implement lossless FIFO channels…
… and can intercept and log messages
… and in this way capture a “fake” instant in time,

So if all of that works… we’re golden
But doing so may be challenging

WS doesn’t really have channels. So how can we interpose
a logging mechanism between processes?
We’ll be forced to implement a “user-level” version of the
algorithm by structuring the application itself appropriately
This is one of our project assignments

Next in our list?

Distributed garbage collection
Arises more and more commonly in big systems!

The problem: applications create objects and
pass one-another URLs

We would like to delete objects if there are no
URLs pointing to them in the system
We’ll assume that these URLs all live in machine-
readable objects in the file system
Assume we know “root” object in each file system
(and are given a list of file systems)

Distributed Garbage Collection

root root

4

Distributed Garbage Collection

Make a list of candidates at each site

root root

Distributed Garbage Collection

Remove items from that list if there is a
live pointer to them from a remote site

root root

Distributed Garbage Collection

Delete dead items

root root

Distributed Garbage Collection

Object being moved can confuse our
search. So can a crashed file server

root root

Review: what makes it hard?

Must detect cycles and delete them if
disconnected from a root (any root)
While the algorithm is running, objects might
be getting created or deleted or moved
Machines may be down, preventing us from
visiting them. And when a machine recovers
after being down for a long time, it may
“start” by moving objects to other machines

Conceptual solution

A consistent snapshot might do the trick
The “local snapshot” would be a list of objects that
have no local references (candidates to garbage
collect), and URLs pointing to remote objects

No need to “announce” existence of an object that has at
least one local reference

Channel state needs to show objects being moved
from machine to machine
Then build a graph, mark nodes reachable from
any root. Delete unreachable nodes

5

Challenges

Dealing with failed machines is hard
Our algorithm needs to hang around
waiting for such a machine to restart
But normally, in Web Services, there is no
system-wide “machine status” service and
messages sent to a machine while it is
down will time out and be discarded!
Emblematic of lack of a “life cycle” service
for applications in Web Services systems

Options?

Best option might be to create your
own object management subsystem

Applications would need to use it when
creating, deleting, or moving objects
It could then implement desired
functionality at the user level

Another possibility: garbage collector
could just retry until it manages to run
when all machines are healthy

More practical issues

In big centers some machines get
added and some are retired, and this
can be abrupt

So how do we deal with references both to
and from such a machine?
Seems like a “group join” problem

In very large systems, centralized
snapshot scheme might not scale

Other consistent snapshot uses?

Detecting distributed deadlocks
Here we build a “waiting for” graph

Rebalancing objects in a cluster
Snapshot used to capture state
Then some process figures out an ideal layout
and, if necessary, initiates object movement

Computing a good routing structure
If we base on a snapshot can guarantee
consistency (provided that everyone switches
routing tables at the same time, of course)

Review of practical challenges

We’ve seen that it can be very hard to
interpose our algorithm in a complex system

Particularly if that system has pre-existing
components that we can’t access
For example many products have services of their
own inside and we can’t modify them
But can often hack-around this by building
application-level libraries (“layers”) to “wrap” the
handling of the objects we’re interested in

Review of practical challenges

Who should run the algorithm?
Our algorithm is described as if there was a
leader “in charge” of running it

The leader starts the protocol execution
Then collects the results up
Computes the desired “actions”
And tells everyone what to do

But where did the leader come from?

6

Leaders in snapshot protocols

Many systems just punt on this issue
For example, might say that “any process can
initiate a snapshot”
But now must deal with having two running at the
same time

Why is this hard?
Must somehow “name” each protocol instance
Keep results separated by instance id
For example: (leader’s IP address, unique #)

Fault-tolerance concerns

We mentioned difficulties created by failed
machines

First, in Web Services, there is no standard way to
recognize that a machine is faulty

Timeouts can give inconsistent results
Second, we lack any way to make sure a
recovering machine will do something “first”

If we had such an option we might be able to use it to
hack around our needs

In practice many protocols run to completion but
“fail” if some machines didn’t respond in time

Fault-tolerance concerns

What if the leader who started the
protocol fails while it’s running?

Logs will start to get very big. And system
runs slowly while logging
One option: throw away snapshot data
after some amount of time elapses

But how long to wait?
Any fixed number could be a bad choice…

Concurrently running instances

If we uniquely identify each protocol
instance we can (potentially) run
multiple instances in parallel

Requires clever data structures and
bookkeeping
For example, in systems where messages
might be large, might not want any single
message to end up in multiple logs

In your banking project…

We’ll ask you to tackle this set of issues
For your purposes, state is small and
this helps quite a bit
The best solutions will be

Tolerant of failures of branches
Tolerant of failures in the initiator
processes
Able to run multiple concurrent snapshots

Last topic for today

We have two additional problems on
our list

Fault-tolerance in a long-running eScience
application
Migrating work in an active system

Both are instances of checkpoint-restart
paradigm

7

eScience systems

Emergence of the global grid has
shifted scientific computing emphasis

In the past focus was on massive parallel
machines in supercomputing centers
With this new shift, focus is on clustered
computing platforms
SETI@Home illustrates grid concept: here
the cluster is a huge number of home
machines linked by the Internet!

The fault-tolerance problem

Some applications are embarassingly
parallel

The task decomposes into a huge number
of separate subtasks that can be farmed
out to separate machines, and they don’t
talk to each other
Here, we cope with faults by just asking
someone else to compute any result that
doesn’t show up in reasonable time

The fault-tolerance problem

But not all applications fit that model
IBM Blue Gene computer has millions of
CPUs
Applications often communicate heavily
with one-another
In this environment, we can’t use the
“zillions of separate tasks” model

Researchers are doing coordinated
checkpointing

How they approach it

Recent trends favor automatically doing
checkpoint/restart with the compiler!

The compiler can analyze program state and
figure out how to make a checkpoint and how to
incrementally update it
The runtime environment can log channel state
and handle node-to-node coordination

Effect is to hide the fault-tolerance
mechanism from the programmer!

This is a big project at Cornell

Keshav Pingali and Paul Stoghill lead it
They are working in the Web Services
paradigm, but compiling codes that were
written using MPI and PVM
Solutions have extremely low overhead

Often below 1% slowdown

And are very transparent
Potentially completely invisible to the user

Task migration

A closely related problem
Arises in systems where some actions
turn out to be very long running and
can’t be “detected” ahead of time

For example, computing an audit
Reorganizing a database
Defragmenting a disk…

8

Scenario

We accept tasks over the network and
load-balance them onto servers
But some servers get overloaded

Scenario

Idea is to checkpoint the individual task
Then move to some other place and
restart from the checkpoint

What makes this hard?

We’ve shown our single task as if it was
on one machine

But in modern systems one “task” may
have activities on multiple computers

For example if a program talks to remote
servers and they maintain some state for it
A checkpoint of such a task is a bit like a
consistent snapshot!

What makes it hard?

We’ve also drawn the picture as if each
task is disconnected from the rest of
the world

But many tasks will actually have “clients”
that interact with the task over time
If we move the task… we need to move
the associated “communication endpoint”
And the clients will need to know

Scenario

A task with a client talking to it. The
client’s “endpoint” will need to shift to
the new site!

Client system

Why is this hard to do?

In Web Services (and CORBA) that
client is probably connected to the site
via TCP

Must either have a way to ask the client to
reconnect, which may be impractical
Or a way to transparently move a TCP
endpoint

9

Could one “move” a TCP connection?

We would need to move the IP address
We know that in the modern internet, IP
addresses do move, all the time
NATs and firewalls do this, why can’t we?

We would also need to move the TCP
connection “state”

Depending on how TCP was implemented
this may actually be easy!

Migrating a TCP connection

client

Initial Server

New Server

Client “knows” the server by its TCP endpoint:
an IP address and port that speak TCP and

have the state of this connection

The server-side state consists of the contents
of the TCP window (on the server), the socket
to which the IP address and port are bound,
and timeouts or ACK/NACK “pending actions”

We can write this state into a checkpoint record

TCP state

TCP state

We transmit the TCP state (with any other tasks we
migrate) to the new server. It opens a socket, binds
to the SAME IP address, initializes its TCP stack out of

the checkpoint received from the old server

The client never even notices that the
channel endpoint was moved!

The old server discards its connection endpoint

TCP connection state

Includes:
The IP address, port # used by the client
and the IP address and port on the server

Best to think of the server as temporarily
exhibiting a “virtual address”
That address can be moved

Contents of the TCP “window”
We can write this down and move it too

ACK/NACK state, timeouts

Generalizing the idea

If we can checkpoint and move a TCP
endpoint without breaking the channel

Then we can also imagine a continuously
replicated TCP endpoint
This would let us have an unbreakable connection
from one client to a cluster of servers!
We’ll develop this idea later after we build reliable
multicast primitives

Value? Think of a “stock market ticker” that
works, continuously, even if server crashes

Fault-tolerant TCP connection

client

Initial Server

New Server

With replication technology we could
continuously replicate the connection
state (as well as any “per task” state

needed by the server)

Fault-tolerant TCP connection

client

Initial Server

New Server

After a failure, the new server could
take over, masking the fault. The

client doesn’t notice anything

10

Recap and summary

We’ve begun to develop powerful,
general tools

They aren’t always of a form that the
platform can (or should) standardize
But we can understand them as templates
that can be specialized to our needs
Thinking this way lets us see that many
practical questions are just instances of the
templates we’ve touched on in the course

What next?

We’ll resume the development of primitives
for replicating data

First, notion of group membership
Then fault-tolerant multicast
Then ordered multicast delivery
Finally leads to virtual synchrony “model”
Later will compare it to the State Machine
replication model (quorums)

And will use replication to tackle additional
practical problems, much as we did today

