CS514: Intermediate Course
* in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

:.| Applications of these ideas

= Over the past three weeks we've heard about

= Transactions

= Logical time, consistent cuts

= Distributed checkpoint mechanisms

= Agreement protocols, such as 2PC and 3PC
= Before we drill down and learn more

mechanisms like these... what good are these

things?

3 Applications of these ideas

= Today, we'll review some practical
applications of the mechanisms we've
studied
= Each is representative of a class

= Goal is to illustrate the wide scope of these
mechanisms, their power, and the ways
you might use them in your own work

:.’ Specific topics we'll cover

= Transactions on = Distributed garbage

multiple servers collection
= Auditing a system = Rebalancing objects in a
= Detecting deadlocks cluster
= Fault-tolerance in a = Computing a good
long-running eScience routing structure
application = Migrating tasks and TCP
connections from server
to server

3 Solutions “inspired” by paradigms

= The solutions we arrive at won't always
use the earlier protocol in a literal way
= Think of “paradigms” or “templates”
= When they match a problem...

= ... YOu can specialize them to create a good
solution

1.| Let’s start with 2PC and transactions

= The problem:

= Some applications perform operations on
multiple databases

= We would like a guarantee that either a//
the databases get updated, or none does

= The relevant paradigm? 2PC

5 Problem: Pictorial version

Create new Add to 3-floor
employee coffee fund

= = =
Employees Coffee
database fund

= Goal? Either p succeeds, and both lists get
updated, or something fails and neither does

:.| Issues?

= P could crash part way through...

= ... a database could throw an exception,
e.g. “invalid SSN” or “duplicate record”

= ... a database could crash, then restart,

and may have “forgotten” uncommitted
updates (presumed abort)

. 2PC is a good match!

= Adopt the view that each database
votes on its willingness to commit

= Until the commit actually occurs, update is
considered temporary

= In fact, database is permitted to discard a
pending update (covers crash/restart case)

= 2PC covers all of these cases

:.’ Solution

= P runs the transactions, but warns
databases that these are part of a
transaction on multiple databases
= They need to retain locks & logs
= When finished, run a 2PC protocol
= Until they vote “ok” a database can abort
= 2PC decides outcome and informs them

5 Low availability?

= One concern: we know that 2PC blocks
= The failure scenario isn't all that rare
= Options?
= Could use 3PC to reduce this risk, but will
pay a cost on every transaction
= Or just accept the risk

= Can eliminate the risk with special
hardware but may pay a fortune!

:.| Next example: Auditing

= Our goal is to “audit” a system
= Involves producing a summary of the state
= Should look as if system was idle
= Our options?
= Freeze the whole system, then snapshot
the state. This is very disruptive
= Or could use the Chandy/Lamport
“consistent snapshot” algorithm

!.’ Auditing ‘@)

yNs
Assets ‘ Liabilitiesl ab : A

| s1,z41,7s1,251.23‘ ss75,zz1,117.17|

)

o/

Uses for auditing

= In a bank, may be the only practical way to
understand “institutional risk”
= Need to capture state at some instant in time. If
branches report status at closing time, a bank that
operates world-wide gets inconsistent answers!
= In a security-conscious system, might audit to
try and identify source of a lea
= In a hospital, want ability to find out which
people examined which records
= In an airline, might want to know about
maintenance needs, spare parts inventory

!.’ Practical worries

= Snapshot won't occur at a point in rea/time
= Could be noticeable to certain kinds of auditors
= In some situations only a truly instantaneous audit
can be accepted, but this isn't common
= What belongs in the snapshot?
= Local states... but handling messages in transit
can be very hard to do
= With Web Services, some forms of remote server
calls are nearly transparent!

Pros and cons

= Implementing the algorithm is only practical
= If we can implement lossless FIFO channels...
= ... and can intercept and log messages
= ... and in this way capture a “fake” instant in time,
= So if all of that works... we're golden
= But doing so may be challenging
= WS doesn't really have channels. So how can we interpose
a logging mechanism between processes?
= We'll be forced to implement a “user-level” version of the
algorithm by structuring the application itself appropriately
= This is one of our project assignments

Next in our list?

= Distributed garbage collection
= Arises more and more commonly in big systems!
= The problem: applications create objects and
pass one-another URLs
= We would like to delete objects if there are no
URLSs pointing to them in the system
= We'll assume that these URLSs all live in machine-
readable objects in the file system
= Assume we know “root” object in each file system
(and are given a list of file systems)

,_.| Distributed Garbage Collection

* Distributed Garbage Collection

= Make a list of candidates at each site

* Distributed Garbage Collection

= Remove items from that list if there is a
live pointer to them from a remote site

* Distributed Garbage Collection

= Delete dead items

* Distributed Garbage Collection

= Object being moved can confuse our
search. So can a crashed file server

* Review: what makes it hard?

= Must detect cycles and delete them if
disconnected from a root (any root)

= While the algorithm is running, objects might
be getting created or deleted or moved

= Machines may be down, preventing us from
visiting them. And when a machine recovers
after being down for a long time, it may
“start” by moving objects to other machines

* Conceptual solution

= A consistent snapshot might do the trick

= The “local snapshot” would be a list of objects that
have no local references (candidates to garbage
collect), and URLs pointing to remote objects

= No need to “announce” existence of an object that has at
least one local reference

= Channel state needs to show objects being moved
from machine to machine

= Then build a graph, mark nodes reachable from
any root. Delete unreachable nodes

Challenges

= Dealing with failed machines is hard

= Our algorithm needs to hang around
waiting for such a machine to restart

= But normally, in Web Services, there is no
system-wide “machine status” service and
messages sent to a machine while it is
down will time out and be discarded!

= Emblematic of lack of a “life cycle” service
for applications in Web Services systems

:.| Options?

= Best option might be to create your
own object management subsystem
= Applications would need to use it when
creating, deleting, or moving objects
= It could then implement desired
functionality at the user level
= Another possibility: garbage collector
could just retry until it manages to run
when all machines are healthy

. More practical issues

= In big centers some machines get
added and some are retired, and this
can be abrupt

= S0 how do we deal with references both to
and from such a machine?

= Seems like a “group join” problem

= In very large systems, centralized
snapshot scheme might not scale

Other consistent snapshot uses?

= Detecting distributed deadlocks
= Here we build a “waiting for” graph
= Rebalancing objects in a cluster
= Snapshot used to capture state
= Then some process figures out an ideal layout
and, if necessary, initiates object movement
= Computing a good routing structure

= If we base on a snapshot can guarantee
consistency (provided that everyone switches
routing tables at the same time, of course)

5 Review of practical challenges

= We've seen that it can be very hard to
interpose our algorithm in a complex system
= Particularly if that system has pre-existing
components that we can't access

= For example many products have services of their
own inside and we can’t modify them

= But can often hack-around this by building
application-level libraries (“layers”) to “wrap” the
handling of the objects we're interested in

:.| Review of practical challenges

= Who should run the algorithm?
= Our algorithm is described as if there was a
leader “in charge” of running it

= The leader starts the protocol execution
= Then collects the results up
= Computes the desired “actions”
= And tells everyone what to do

= But where did the leader come from?

5 Leaders in snapshot protocols

= Many systems just punt on this issue

= For example, might say that “any process can
initiate a snapshot”

= But now must deal with having two running at the
same time

= Why is this hard?
= Must somehow “name” each protocol instance
= Keep results separated by instance id
= For example: (leader’s IP address, unique #)

Fault-tolerance concerns

= We mentioned difficulties created by failed
machines
= First, in Web Services, there is no standard way to
recognize that a machine is faulty
= Timeouts can give inconsistent results
= Second, we lack any way to make sure a
recovering machine will do something “first”
= If we had such an option we might be able to use it to
hack around our needs
= In practice many protocols run to completion but
“fail” if some machines didn't respond in time

. Fault-tolerance concerns

= What if the leader who started the
protocol fails while it's running?
= Logs will start to get very big. And system
runs slowly while logging
= One option: throw away snapshot data
after some amount of time elapses
= But how long to wait?
= Any fixed number could be a bad choice...

:.’ Concurrently running instances

= If we uniquely identify each protocol

instance we can (potentially) run

multiple instances in parallel

= Requires clever data structures and
bookkeeping

= For example, in systems where messages
might be large, might not want any single
message to end up in multiple logs

In your banking project...

= We'll ask you to tackle this set of issues
= For your purposes, state is small and
this helps quite a bit
= The best solutions will be
= Tolerant of failures of branches

= Tolerant of failures in the initiator
processes

= Able to run multiple concurrent snapshots

:.| Last topic for today

= We have two additional problems on
our list

= Fault-tolerance in a long-running eScience
application

= Migrating work in an active system

= Both are instances of checkpoint-restart
paradigm

5 eScience systems

= Emergence of the global grid has
shifted scientific computing emphasis
= In the past focus was on massive parallel
machines in supercomputing centers
= With this new shift, focus is on clustered
computing platforms

= SETI@Home illustrates grid concept: here
the cluster is a huge number of home
machines linked by the Internet!

:.| The fault-tolerance problem

= Some applications are embarassingly
parallel

= The task decomposes into a huge number
of separate subtasks that can be farmed
out to separate machines, and they don't
talk to each other

= Here, we cope with faults by just asking

someone else to compute any result that
doesn’t show up in reasonable time

The fault-tolerance problem

= But not all applications fit that model

= IBM Blue Gene computer has millions of
CPUs

= Applications often communicate heavily
with one-another

= In this environment, we can't use the
“zillions of separate tasks” model
= Researchers are doing coordinated
checkpointing

:.’ How they approach it

= Recent trends favor automatically doing
checkpoint/restart with the compiler!

= The compiler can analyze program state and
figure out how to make a checkpoint and how to
incrementally update it

= The runtime environment can log channel state
and handle node-to-node coordination
= Effect is to hide the fault-tolerance
mechanism from the programmer!

5 This is a big project at Cornell

= Keshav Pingali and Paul Stoghill lead it
= They are working in the Web Services
paradigm, but compiling codes that were
written using MPI and PVM
= Solutions have extremely low overhead
« Often below 1% slowdown
= And are very transparent
= Potentially completely invisible to the user

:.| Task migration

= A closely related problem

= Arises in systems where some actions
turn out to be very long running and
can't be “detected” ahead of time
= For example, computing an audit
= Reorganizing a database
= Defragmenting a disk...

5 Scenario

= We accept tasks over the network and
load-balance them onto servers

= But some servers get overloaded

D e i
I

:.| Scenario

= Idea is to checkpoint the individual task

= Then move to some other place and
restart from the checkpoint

.

s v e
A
AL

. What makes this hard?

= We've shown our single task as if it was
on one machine
= But in modern systems one “task” may
have activities on multiple computers
= For example if a program talks to remote
servers and they maintain some state for it
= A checkpoint of such a task is a bit like a
consistent snapshot!

:.’ What makes it hard?

= We've also drawn the picture as if each
task is disconnected from the rest of
the world
= But many tasks will actually have “clients”
that interact with the task over time

= If we move the task... we need to move
the associated “communication endpoint”

= And the clients will need to know

5 Scenario

= A task with a client talking to it. The
client’s “endpoint” will need to shift to

the new site!

:.| Why is this hard to do?

= In Web Services (and CORBA) that
client is probably connected to the site
via TCP
= Must either have a way to ask the client to
reconnect, which may be impractical

= Or a way to transparently move a TCP
endpoint

:. Could one “move” a TCP connection?

= We would need to move the IP address

= We know that in the modern internet, IP
addresses do move, all the time

= NATs and firewalls do this, why can't we?
= We would also need to move the TCP
connection “state”

= Depending on how TCP was implemented
this may actually be easy!

:.| Migrating a TCP connection

The server-side state consists of the contents ‘
1

ndpoint
—d

l The old server discards its connection el

Initial Server

The client never even notices that the

channel endpoint was moved! New Server

\ y other tasks we

migrate) to the new server. It opens a socket, binds

to the SAME IP address, initializes its TCP stack out of
the checkpoint received from the old server

3 TCP connection state

= Includes:
= The IP address, port # used by the client
and the IP address and port on the server

= Best to think of the server as temporarily
exhibiting a “virtual address”

= That address can be moved
= Contents of the TCP “window”

= We can write this down and move it too
= ACK/NACK state, timeouts

Generalizing the idea

= If we can checkpoint and move a TCP
endpoint without breaking the channel

= Then we can also imagine a continuously
replicated TCP endpoint

= This would let us have an unbreakable connection
from one client to a cluster of servers!

= We'll develop this idea later after we build reliable
multicast primitives
= Value? Think of a “stock market ticker” that
works, continuously, even if server crashes

3 Fault-tolerant TCP connection
With replication technology we could
]

continuously replicate the connection
=

state (as well as any “per task” state
needed by the server)

!.| Fault-tolerant TCP connection

After a failure, the new server could
take over, masking the fault. The
client doesn't notice anything

5 Recap and summary

= We've begun to develop powerful,

general tools

= They aren't always of a form that the
platform can (or should) standardize

= But we can understand them as templates
that can be specialized to our needs

= Thinking this way lets us see that many
practical questions are just instances of the
templates we've touched on in the course

What next?

= We'll resume the development of primitives
for replicating data
= First, notion of group membership
= Then fault-tolerant multicast
= Then ordered multicast delivery
= Finally leads to virtual synchrony “model”
= Later will compare it to the State Machine
replication model (quorums)
= And will use replication to tackle additional
practical problems, much as we did today

