
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

RECAP: Agreement Protocols

These are used when a set of processes
needs to make a decision of some sort
The problem arises often and can take
many forms

An agreement protocol solves a simple
(single-bit) instance of the general problem
Gives us a “template” for building fancier
protocols that solve other problems

When is agreement needed?

Recall Sam and Jill from lecture 5
Sam was hoping he and Jill could eat
outside but they couldn’t get their act
together and ended up eating inside
It illustrated a type of impossibility result:

Impossible to learn new “common knowledge”
facts in an asynchronous distributed system
Defn: “I know that you know that I know…”
without any finite limit on the chain

FLP was about agreement

There we focused on agreement on the
value of a single bit
We concluded that

One can build decision protocols
And prove that they decide correctly
And can even include failure handling

But they can’t guarantee progress
If if we have many processes and know that at
most one of them might crash

We don’t always need the FLP
“version” of agreement

Sam and Jill needed an impossible-to-achieve
form of agreement!

Had they sought a weaker guarantee they might
have been able to eat outside without risk!

For example: suppose Sam sends “Let’s eat outside” and
Jill replies “Sounds good,” and Sam replies “See yah!”
3-way handshake has risk built in (if the last message
doesn’t get through, what to do?) but the risk isn’t large.
If they can live with that risk… it solves the problem

FLP is about impossible “progress” properties

When is agreement needed?

Situations where agreement arises
Ordering updates to a replicated data item

Might allow concurrent updates from sources
that don’t coordinate their actions
Or could have updates that are ordered by,
say, use of locking but that might then get
disordered in transmission through the network

Decision on which updates “occurred”
An issue in systems that experience faults

2

More needs for agreement

Agreement on the membership
Agreement on the leader, or some
other process with a special role
Agreement on a ranking
Agreement on loads or other inputs to a
load balancing service
Agreement on the mapping of a name
to a target IP address, or on routing

One protocol isn’t enough!

We’ll need different solutions for these
different agreement problems

But if we abstract away the detail can learn
basic things about how such protocols
should be structured
Also can learn to prove correctness
Then can build specific specialized ones,
optimized for a particular use and
engineered to perform well

Agreement: Paradigms

We’ve already seen two examples
FLP involved consensus on a single bit

Processes have a bit values 0 or 1
Protocol executes
Outcome: all agree on a value (and it was a legitimate
input, and they tolerate faults, and we are faithful to the
decisions of the dead)

Byzantine Agreement: same idea; different model

But paradigms are about clean theory.
Engineering implies a focus on speed!

Things we know

From FLP we know that this statement of the
problem…

… can be solved in asynchronous settings
… but solution can’t guarantee liveness

There is at least one input scenario and “event
sequence” that prevents progress

From BA, we know that in a system with
synchronized rounds, solutions can be found,
but they are costly

Anyhow, that synchronous model is impractical

What about real systems?

Real world is neither synchronous nor
asynchronous

We’ve got a good idea of messages latency
… and pretty good clocks
Like Sam and Jill, we may be able to
tolerate undesired but unlikely outcomes
Anyhow, no real system can achieve
perfect correctness (at best we depend on
the compiler, the operating system)

Real world goals?

Practical solutions that:
Work if most of the system is working
Tolerate crashes and perhaps even some
mild forms of “Byzantine” behavior, like
accidental data corruption
“Strive to be live” (to make progress) but
accept that some crash/partitioning
scenarios could prevent this, like it or not

We still want to be rigorous

3

Performance goals

Want solutions that are cheap, but what
should this mean?

Traditionally: low total number of messages sent
(today, only rarely an important metric)
Have low costs in per-process messages sent,
received (often important)
Have low delay from when update was generated
to when it was applied (always VERY important)

Other goals

Now we’ll begin to work our way up to
really good solutions. These:

Are efficient in senses just outlined
Are packaged so that they can be used to
solve real problems
Are well structured, so that we can
understand the code and (hopefully)
debug/maintain it easily

Roadmap

To do this
First look at 2-phase and 3-phase commit

This pattern of communication arises in many protocols
and will be a basic building block

Next look at “agreeing on membership”
Protocols that track membership give fastest update
rates, often by orders of magnitude!

Then, implement an ordered update (or multicast)
over these mechanisms
Finally, think about software architecture issues

Roadmap

This will give us
A notion of a “process group”

Has a name… and a set of members… and the
system can dynamically track membership
Membership ranking is useful in applications

Ways to do ordered, reliable, multicast
Things built over these primitives: leader
election, replication, fault-tolerant request
execution, etc

Historical aside

We’re following the evolution of the area now
called “distributed systems”
But we’re focused on the path that gave the
highest performance solutions

Also known as virtual synchrony systems
Historically, many researchers focused on
quorum systems, a second path

Much slower, although also has some benefits
Closely related to “State Machine” replication

Historical aside

1970’s: 2PC in static groups,
for database replication.
First uses of quorums

1980’s: Virtual synchrony

Group multicast, replication

1978: State machines

1980’s: Consensus

Modern quorum systems

First uses of replication were in
transactional databases and

employed a protocol we’ll explore
today. But the solutions don’t

guarantee availability

Later people separated replication
and tackled it as a free-standing
question. One major line of work

used a lock-step model called state
machines and this is closely related

to consensus

A second line of research focused
instead on notions of groups and

layered replication over that
abstraction. The protocols are
complex but perform very well

4

Historical Aside

Two major classes of real systems
Virtual synchrony

Weaker properties – not quite “FLP consensus”
Much higher performance (orders of magnitude)
Requires that majority of system remain connected.
Partitioning failures force protocols to wait for repair

Quorum-based state machine protocols are
Closer to FLP definition of consensus
Slower (by orders of magnitude)
Sometimes can make progress in partitioning situations
where virtual synchrony can’t

Names of some famous systems

Isis was first practical virtual synchrony system
Later followed by Transis, Totem, Horus
Today: Best options are Jgroups, Spread, Ensemble
Technology is now used in IBM Websphere and
Microsoft Windows Clusters products!

Paxos was first major state machine system
BASE and other Byzantine Quorum systems now
getting attention from the security community

(End of Historical aside)

We’re already on track “A”

We’re actually focused more on the
virtual synchrony “track”

Not enough time to do justice to both
And systems engineers tend to prefer very
high performance
But for systems doing secure replication,
the Byzantine Quorums approach is
probably better despite costs

The commit problem
An initiating process communicates with a group of
actors, who vote

Initiator is often a group member, too
Ideally, if all vote to commit we perform the action
If any votes to abort, none does so

Asynchronous model
Network is reliable, but no notion of time
Fail-stop processes

In practice we introduce timeouts;
If timeout occurs the leader can presume that a member
wants to abort. Called the presumed abort assumption.

As a time-line picture

2PC
initiator

p
q
r
s
t

Vote?

All vote “commit”

Commit!

Observations?

Any member can abort any time it likes,
even before the protocol runs

E.g. if we are talking “about” some
pending action that the group has known
for a while

We call it “2 phase” even though it
actually has 3 rounds of messages

5

As a time-line picture

2PC
initiator

p
q
r
s
t

Vote?

All vote “commit”

Commit!

Phase 1 Phase 2

In fact we’re missing stuff

Eventually will need to do some form of
garbage collection

Issue is that participants need memory of
the protocol, at least for a while
But can delay garbage collection and run it
later on behalf of many protocol instances

Part of any real implementation but not
thought of as part of the protocol

Fault tolerance

We can separate this into three cases
Group member fails; initiator remains healthy
Initiator fails; group members remain healthy
Both initiator and group member fail

Further separation
Handling recovery of a failed member
Recovery after “total” failure of the whole group

Fault tolerance

Some cases are pretty easy
E.g. if a member fails before voting we just
treat it as an abort
If a member fails after voting commit, we
assume that when it recovers it will finish
up the commit and perform whatever
action we requested

Hard cases involve crash of initiator

Initiator fails, members healthy

Must ask “when did it fail”?
Could fail before starting the 2PC protocol

In this case if the members were expecting the protocol
to run, e.g. to terminate a pending transaction on a
database, they do “unilateral abort”

Could fail after some are prepared to commit
Those members need to learn the outcome before they
can “finish” the protocol

Could fail after some have learned the outcome
Others may still be in a prepared state

Ideas?

Members could do an all-to-all broadcast
But this won’t actually work… problem is that if a
process seems to have failed, perhaps some of us
will have seen its messages and some not

Could elect a leader to solve the problem
Forces us to inject leader election into our system

Could use some sort of highly available log
server that remembers states of protocols

This is how Web Services does it

6

Leads to two ideas

Initiator should record the decision in a
logging server for use after crashes

We saw this in the Web Services transactional
systems slide set last week

Also, members can help one-another
terminate the protocol

E.g., a leader can take over if the initiator fails
This is needed if a failure happens before the
initiator has a chance to log its decision

Problems?

2PC has a “bad state”
Suppose that the initiator and a member
both fail and we aren’t using a “log”

As 2PC is normally posed, we don’t have a log
server in the problem statement
(In practice, log server can eliminate this issue)

There is a case in which we can’t terminate
the protocol!

As a time-line picture

2PC
initiator

p
q
r
s
t

Vote?

All vote “commit”

Commit!
Phase 1 Phase 2

Why do we get stuck?

If process p voted “commit”, the coordinate
may have committed the protocol

And p may have learned the outcome
Perhaps it transferred $10M from a bank
account…
So we want to be consistent with that

If p voted “abort”, the protocol must abort
And in this case we can’t risk committing

Why not always have a log?

In some sense, a log service is just
another member

In effect, Web Services is willing to wait if
its log server crashes and must reboot
And guarantees that if this doesn’t happen
you never need to wait
But in many systems we just want to use
2PC. Using a separate server is a pain

Can we solve the problem without it?

3 phase commit

Protocol was introduced by Skeen and
Stonebraker
And it assumes detectable failures

We happen to know that real systems can’t detect
failures, unless they can unplug the power for a
faulty node
But Skeen and Stonebraker set that to the side

Idea is to add an extra “prepared to commit”
stage

7

3 phase commit

3PC
initiator

p
q
r
s
t

Vote?

All vote “commit”

Phase 1

Prepare to commit

All say “ok”

Phase 2

They commit

Commit!

Phase 3

Why 3 phase commit?

A “new leader” in the group can deduce the
outcomes when this protocol is used
Main insight?

Nobody can enter the commit state unless all are
first in the prepared state
Makes it possible to determine the state, then
push the protocol forward (or back)

But does require accurate failure detections
If it didn’t, would violate the FLP result!

Value of 3PC?

Even with inaccurate failure detections, it
greatly reduces the window of vulnerability

The bad case for 2PC is not so uncommon
Especially if a group member is the initiator
In that case one badly timed failure freezes the whole
group

With 3PC in real systems, the troublesome case
becomes very unlikely

But the risk of a freeze-up remains

Initial

OK

Prepare

Commit

Abort

Inquire

Prepare OK

Commit Abort

Abort

Coord failed

OK?

Prepare

Comm it

State diagram for non-faulty member
Protocol starts in the initial state. Initiator

sends the “OK to commit” inquiry

We collect responses. If any is an abort,
we enter the abort stageOtherwise send prepare-to-commit

messages out

Coordinator failure sends us into an
inquiry mode in which someone (anyone)

tries to figure out the situation

This state corresponds to the coordinator
sending out the commit messages. We enter

the state when all members receive them

Here, we “finish off” the prepare state if a crash
interrupted it, by resending the prepare

message (needed in case only some processes
saw the coordinator’s message before it

crashed)
We get here if some processes were still

in the initial “OK to commit?” stage
In this case it is safe to abort, and we do so

Some additional details

Like 2PC, 3PC needs some extra work
Issue is that members need to save some
information about the protocol until it
terminates
In practice this requires an extra round for
garbage collection
Often we do this just now and then, on
behalf of many terminated protocols, so
costs are amortized and very low

What next?

We’ll use a protocol based on 2PC and
3PC (both are used) to build a group
membership service

This is a system service that tracks
membership of process groups
The service itself tries to be highly
available (but can’t always do so)
Other processes use it in place of a failure
detection system

8

Layering

Tracking group membership: We’ll base 2PC and 3PC

Fault-tolerant multicast: We’ll use membership

Ordered multicast: We’ll base it on fault-tolerant multicast

Tools for solving practical replication and availability problems:
we’ll base them on ordered multicast

Robust Web Services: We’ll build them with these tools

2PC and 3PC: Our first “tools” (lowest layer)

But first…

We’ve seen several new mechanisms
Let’s pause and ask if we can already
apply them in some practical real-world
settings
Then resume and work our way up the
protocol stack!

What should you be reading?

We’re working our way through Chapter
14 of the textbook now
Read the introduction to Part III and
Chapters 13, 14 and 15

