
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Fault-tolerance concern

n Our reason for discussing transactions
was to improve fault-tolerance
n They ensured that a server can restart in a

cleaned up state
n But sometimes we need high availability

and yet we want consistent behavior
n What issues arise if things can fail and we

can’t wait for restart, or “abort” what we
were doing?

Failure models

n Issues related to failures
n How do systems “fail?”
n Given a category of failures, are there limits to

what can we do about it?

n Today explore this issue
n Real world studies of failure rates
n Experience with some big projects that failed
n Formal models of failure (crash, fail -stop,

Byzantine)
n A famous (but confusing) impossibility result

Who needs failure “models”?

n The problem is that processes can fail in so
many ways
n Hardware failures are rare, but they happen
n Software bugs can cause a program to

malfunction by crashing, corrupting data, or just
failing to “do its job”

n Intruders might inject some form of failure to
disrupt or compromise a system

n A failure detector could malfunction, signaling a
failure even though nothing is wrong

Bohrbugs and Heisenbugs

n A categorization due to Bruce Lindsey
n Bohrbugs are dull, boring, debuggable bugs

n They happen every time you run the program and are
easy to localize and fix using modern development tools

n If “purify” won’t find it… try binary search
n Heisenbugs are hard to pin down

n Often associated with threading or interrupts
n Frequently a data structure is damaged but this is only

noticed much later
n Hence hard to reproduce and so hard to fix
n In mature programs, Heisenbugs dominate

Clean-room development

n Idea is that to write code
n First, the team develops a good specification and

refines it to modules
n A primary coding group implements them
n Then the whole group participates in code review
n Then the primary group develops a

comprehensive test suite and runs it
n Finally passes off to a Q/A group that redoes

these last stages (code review, testing)
n Later, upgrades require same form of Q/A!

2

Reality?

n Depends very much on the language
n With Java and C# we get strong type checking

and powerful tools to detect many kinds of
mistakes

n Also clean abstraction boundaries

n But with C++ and C and Fortran, we lack
such tools

n The methodology tends to require good tools

Why do systems fail?

n Many studies of this issue suggest that
n Incorrect specifications (e.g. the program

just doesn’t “work” in the first place)
n Lingering Heisenbugs, often papered-over
n Administrative errors
n Unintended side-effects of upgrades and

bug fixes

n … are dominant causes of failures.

What can we do about it?

n Better programming languages,
approaches and tools can help
n For example shift from C to Java and C#

has been hugely beneficial
n But we should anticipate that large

systems will exhibit problems
n Failures are a side-effect of using

technology to solve complex problems!

Who needs failure “models”?

n Role of a failure model
n Lets us reduce fault-tolerance to a

mathematical question
n In model M, can problem P be solved?
n How costly is it to do so?
n What are the best solutions?
n What tradeoffs arise?

n And clarifies what we are saying
n Lacking a model, confusion is common

Categories of failures

n Crash faults, message loss
n These are common in real systems
n Crash failures: process simply stops, and

does nothing wrong that would be
externally visible before it stops

n These faults can’t be directly detected

Categories of failures

n Fail-stop failures
n These require system support
n Idea is that the process fails by crashing,

and the system notifies anyone who was
talking to it

n With fail-stop failures we can overcome
message loss by just resending packets,
which must be uniquely numbered

n Easy to work with… but rarely supported

3

Categories of failures

n Non-malicious Byzantine failures
n This is the best way to understand many

kinds of corruption and buggy behaviors
n Program can do pretty much anything,

including sending corrupted messages
n But it doesn’t do so with the intention of

screwing up our protocols
n Unfortunately, a pretty common mode

of failure

Categories of failure

n Malicious, true Byzantine, failures
n Model is of an attacker who has studied the

system and wants to break it
n She can corrupt or replay messages, intercept

them at will, compromise programs and substitute
hacked versions

n This is a worst-case scenario mindset
n In practice, doesn’t actually happen
n Very costly to defend against; typically used in

very limited ways (e.g. key mgt. server)

Models of failure

n Question here concerns how failures
appear in formal models used when
proving things about protocols

n Think back to Lamport’s happens-before
relationship, →
n Model already has processes, messages,

temporal ordering
n Assumes messages are reliably delivered

Recall: Two kinds of models

n We tend to work within two models
n Asynchronous model makes no

assumptions about time
n Lamport’s model is a good fit
n Processes have no clocks, will wait indefinitely

for messages, could run arbitrarily fast/slow
n Distributed computing at an “eons” timescale

n Synchronous model assumes a lock-step
execution in which processes share a clock

Adding failures in Lamport’s model

n Also called the asynchronous model
n Normally we just assume that a failed process

“crashes:” it stops doing anything
n Notice that in this model, a failed process is

indistinguishable from a delayed process

n In fact, the decision that something has failed
takes on an arbitrary flavor
n Suppose that at point e in its execution, process p

decides to treat q as faulty….”

What about the synchronous model?

n Here, we also have processes and messages
n But communication is usually assumed to be

reliable: any message sent at time t is delivered
by time t+δ

n Algorithms are often structured into rounds, each
lasting some fixed amount of time ∆, giving time
for each process to communicate with every other
process

n In this model, a crash failure is easily detected
n When people have considered malicious

failures, they often used this model

4

Neither model is realistic

n Value of the asynchronous model is that it is
so stripped down and simple
n If we can do something “well” in this model we

can do at least as well in the real world
n So we’ll want “best” solutions

n Value of the synchronous model is that it
adds a lot of “unrealistic” mechanism
n If we can’t solve a problem with all this help, we

probably can’t solve it in a more realistic setting!
n So seek impossibility results

Examples of results

n We saw an algorithm for taking a global
snapshot in an asynchronous system

n And it is common to look at problems
like agreeing on an ordering
n Often reduced to “agreeing on a bit” (0/1)
n To make this non-trivial, we assume that

processes have an input and must pick
some legitimate input value

Connection to consistency

n We started by talking about consistency
n We found that many (not all) notions of

consistency reduce to forms of agreement
on the events that occurred and their order

n Could imagine that our “bit” represents
n Whether or not a particular event took place
n Whether event A is the “next” event

n Thus fault-tolerant consensus is deeply
related to fault-tolerant consistency

Fischer, Lynch and Patterson

n A surprising result
n Impossibility of Asynchronous Distributed

Consensus with a Single Faulty Process

n They prove that no asynchronous algorithm
for agreeing on a one-bit value can guarantee
that it will terminate in the presence of crash
faults
n And this is true even if no crash actually occurs!

n Proof constructs infinite non-terminating runs

Core of FLP result

n They start by looking at a system with
inputs that are all the same
n All 0’s must decide 0, all 1’s decides 1

n Now they explore mixtures of inputs
and find some initial set of inputs with
an uncertain (“bivalent”) outcome

n They focus on this bivalent state

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

S* denotes bivalent state
S0 denotes a decision 0 state
S1 denotes a decision 1 state

Sooner or later all executions
decide 0

Sooner or later all executions
decide 1

5

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

e

e is a critical event that
takes us from a bivalent

to a univalent state:
eventually we’ll “decide” 0

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0

They delay e and show
that there is a situation in

which the system will
return to a bivalent state

S’
*

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0 S’

*

In this new state they
show that we can deliver
e and that now, the new
state will still be bivalent!

S’’
*

e

Bivalent state

System
starts in S*

Events can
take it to
state S1

Events can
take it to
state S0 S’

*

Notice that we made the
system do some work and
yet it ended up back in an
“uncertain” state. We can

do this again and again

S’’
*

e

Core of FLP result in words

n In an initially bivalent state, they look at
some execution that would lead to a
decision state, say “0”
n At some step this run switches from

bivalent to univalent, when some process
receives some message m

n They now explore executions in which m is
delayed

Core of FLP result

n So:
n Initially in a bivalent state
n Delivery of m would make us univalent but we delay m
n They show that if the protocol is fault-tolerant there must be

a run that leads to the other univalent state
n And they show that you can deliver m in this run without a

decision being made
n This proves the result: they show that a bivalent

system can be forced to do some work and yet
remain in a bivalent state.
n If this is true once, it is true as often as we like
n In effect: we can delay decisions indefinitely

6

But how did they “really” do it?

n Our picture just gives the basic idea
n Their proof actually proves that there is

a way to force the execution to follow
this tortured path

n But the result is very theoretical…
n … to much so for us in CS514

n So we’ll skip the real details

Intuition behind this result?

n Think of a real system trying to agree on
something in which process p plays a key role

n But the system is fault-tolerant: if p crashes it
adapts and moves on

n Their proof “tricks” the system into treating p
as if it had failed, but then lets p resume
execution and “rejoin”

n This takes time… and no real progress occurs

But what did “impossibility” mean?

n In formal proofs, an algorithm is totally correct if
n It computes the right thing
n And it always terminates

n When we say something is possible, we mean “there
is a totally correct algorithm” solving the problem

n FLP proves that any fault-tolerant algorithm solving
consensus has runs that never terminate
n These runs are extremely unlikely (“probability zero”)
n Yet they imply that we can’t find a totally correct solution
n And so “consensus is impossible” (“not always possible”)

Recap

n We have an asynchronous model with crash failures
n A bit like the real world!

n In this model we know how to do some things
n Tracking “happens before” & making a consistent snapshot
n Later we’ll find ways to do ordered multicast and implement

replicated data and even solve consensus
n But now we also know that there will always be

scenarios in which our solutions can’t make progress
n Often can engineer system to make them extremely unlikely
n Impossibility doesn’t mean these solutions are wrong – only

that they live within this limit

Tougher failure models

n We’ve focused on crash failures
n In the synchronous model these look like a

“farewell cruel world” message

n Some call it the “failstop model”. A faulty process
is viewed as first saying goodbye, then crashing

n What about tougher kinds of failures?
n Corrupted messages

n Processes that don’t follow the algorithm
n Malicious processes out to cause havoc?

Here the situation is much harder

n Generally we need at least 3f+1
processes in a system to tolerate f
Byzantine failures
n For example, to tolerate 1 failure we need

4 or more processes
n We also need f+1 “rounds”
n Let’s see why this happens

7

Byzantine scenario

n Generals (N of them) surround a city
n They communicate by courier

n Each has an opinion: “attack” or “wait”
n In fact, an attack would succeed: the city will fall.
n Waiting will succeed too: the city will surrender.
n But if some attack and some wait, disaster ensues

n Some Generals (f of them) are traitors… it
doesn’t matter if they attack or wait, but we
must prevent them from disrupting the battle
n Traitor can’t forge messages from other Generals

Byzantine scenario

Attack!

Wait…

Attack!

Attack!
No, wait!

Surrender!

Wait…

A timeline perspective

n Suppose that p and q favor attack, r is
a traitor and s and t favor waiting…
assume that in a tie vote, we attack

p

q

r

s

t

A timeline perspective

n After first round collected votes are:
n {attack, attack, wait, wait, traitor’s-vote}

p

q

r

s

t

What can the traitor do?

n Add a legitimate vote of “attack”
n Anyone with 3 votes to attack knows the

outcome

n Add a legitimate vote of “wait”
n Vote now favors “wait”

n Or send different votes to different folks
n Or don’t send a vote, at all, to some

Outcomes?

n Traitor simply votes:
n Either all see {a,a,a,w,w }
n Or all see {a,a,w,w,w }

n Traitor double-votes
n Some see {a,a,a,w,w } and some {a,a,w,w,w }

n Traitor withholds some vote(s)
n Some see {a,a,w,w }, perhaps others see

{a,a,a,w,w ,} and still others see {a,a,w,w,w }
n Notice that traitor can’t manipulate votes of

loyal Generals!

8

What can we do?

n Clearly we can’t decide yet; some loyal
Generals might have contradictory data
n In fact if anyone has 3 votes to attack, they can

already “decide”.
n Similarly, anyone with just 4 votes can decide
n But with 3 votes to “wait” a General isn’t sure

(one could be a traitor…)

n So: in round 2, each sends out “witness”
messages: here’s what I saw in round 1
n General Smith send me: “attack (signed) Smith”

Digital signatures

n These require a cryptographic system
n For example, RSA
n Each player has a secret (private) key K-1

and a public key K.
n She can publish her public key

n RSA gives us a single “encrypt” function:
n Encrypt(Encrypt(M,K),K-1) =

Encrypt(Encrypt(M,K-1),K) = M
n Encrypt a hash of the message to “sign” it

With such a system

n A can send a message to B that only A could
have sent
n A just encrypts the body with her private key

n … or one that only B can read
n A encrypts it with B’s public key

n Or can sign it as proof she sent it
n B can recompute the signature and decrypt A’s

hashed signature to see if they match
n These capabilities limit what our traitor can

do: he can’t forge or modify a message

A timeline perspective

n In second round if the traitor didn’t
behave identically for all Generals, we
can weed out his faulty votes

p

q

r

s

t

A timeline perspective

n We attack!

p

q

r

s

t

Attack!!

Attack!!

Attack!!

Attack!!

Damn! They’re on to me

Traitor is stymied

n Our loyal generals can deduce that the
decision was to attack

n Traitor can’t disrupt this…
n Either forced to vote legitimately, or is caught

n But costs were steep!
n (f+1)*n2 ,messages!
n Rounds can also be slow….

n “Early stopping” protocols: min(t+2, f+1) rounds;
t is true number of faults

9

Recent work with Byzantine model

n Focus is typically on using it to secure
particularly sensitive, ultra-critical services
n For example the “certification authority” that

hands out keys in a domain
n Or a database maintaining top-secret data

n Researchers have suggested that for such
purposes, a “Byzantine Quorum” approach
can work well

n They are implementing this in real systems by
simulating rounds using various tricks

Byzantine Quorums

n Arrange servers into a √ n x √n array
n Idea is that any row or column is a quorum

n Then use Byzantine Agreement to access that
quorum, doing a read or a write

n Separately, Castro and Liskov have tackled a
related problem, using BA to secure a file
server
n By keeping BA out of the critical path, can avoid

most of the delay BA normally imposes

Split secrets

n In fact BA algorithms are just the tip of a
broader “coding theory” iceberg

n One exciting idea is called a “split secret”
n Idea is to spread a secret among n servers so that

any k can reconstruct the secret, but no individual
actually has all the bits

n Protocol lets the client obtain the “shares” without
the servers seeing one-another’s messages

n The servers keep but can’t read the secret!

n Question: In what ways is this better than
just encrypting a secret?

How split secrets work

n They build on a famous result
n With k+1 distinct points you can uniquely identify

an order-k polynomial
n i.e 2 points determine a line
n 3 points determine a unique quadratic

n The polynomial is the “secret”

n And the servers themselves have the points – the
“shares”

n With coding theory the shares are made just
redundant enough to overcome n-k faults

Byzantine Broadcast (BB)

n Many classical research results use
Byzantine Agreement to implement a
form of fault-tolerant multicast
n To send a message I initiate “agreement”

on that message
n We end up agreeing on content and

ordering w.r.t. other messages
n Used as a primitive in many published

papers

Pros and cons to BB

n On the positive side, the primitive is very
powerful
n For example this is the core of the Castro and

Liskov technique

n But on the negative side, BB is slow
n We’ll see ways of doing fault-tolerant multicast

that run at 150,000 small messages per second
n BB: more like 5 or 10 per second

n The right choice for infrequent, very sensitive
actions… but wrong if performance matters

10

Take-aways?

n Fault-tolerance matters in many systems
n But we need to agree on what a “fault” is
n Extreme models lead to high costs!

n Common to reduce fault-tolerance to some
form of data or “state” replication
n In this case fault-tolerance is often provided by

some form of broadcast
n Mechanism for detecting faults is also important in

many systems.
n Timeout is common… but can behave inconsistently
n “View change” notification is used in some systems.

They typically implement a fault agreement protocol.

