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Fault-tolerance concern

n Our reason for discussing transactions 
was to improve fault-tolerance
n They ensured that a server can restart in a 

cleaned up state
n But sometimes we need high availability 

and yet we want consistent behavior
n What issues arise if things can fail and we 

can’t wait for restart, or “abort” what we 
were doing?

Failure models

n Issues related to failures
n How do systems “fail?” 
n Given a category of failures, are there limits to 

what can we do about it?

n Today explore this issue
n Real world studies of failure rates
n Experience with some big projects that failed
n Formal models of failure (crash, fail -stop, 

Byzantine)
n A famous (but confusing) impossibility result

Who needs failure “models”?

n The problem is that processes can fail in so 
many ways
n Hardware failures are rare, but they happen
n Software bugs can cause a program to 

malfunction by crashing, corrupting data, or just 
failing to “do its job”

n Intruders might inject some form of failure to 
disrupt or compromise a system

n A failure detector could malfunction, signaling a 
failure even though nothing is wrong

Bohrbugs and Heisenbugs

n A categorization due to Bruce Lindsey
n Bohrbugs are dull, boring, debuggable bugs

n They happen every time you run the program and are 
easy to localize and fix using modern development tools

n If “purify” won’t find it… try binary search
n Heisenbugs are hard to pin down

n Often associated with threading or interrupts
n Frequently a data structure is damaged but this is only 

noticed much later
n Hence hard to reproduce and so hard to fix
n In mature programs, Heisenbugs dominate

Clean-room development

n Idea is that to write code
n First, the team develops a good specification and 

refines it to modules
n A primary coding group implements them
n Then the whole group participates in code review
n Then the primary group develops a 

comprehensive test suite and runs it
n Finally passes off to a Q/A group that redoes 

these last stages (code review, testing)
n Later, upgrades require same form of Q/A!
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Reality?

n Depends very much on the language
n With Java and C# we get strong type checking 

and powerful tools to detect many kinds of 
mistakes

n Also clean abstraction boundaries

n But with C++ and C and Fortran, we lack 
such tools

n The methodology tends to require good tools

Why do systems fail?

n Many studies of this issue suggest that
n Incorrect specifications (e.g. the program 

just doesn’t “work” in the first place)
n Lingering Heisenbugs, often papered-over
n Administrative errors
n Unintended side-effects of upgrades and 

bug fixes

n … are dominant causes of failures.

What can we do about it?

n Better programming languages, 
approaches and tools can help
n For example shift from C to Java and C# 

has been hugely beneficial
n But we should anticipate that large 

systems will exhibit problems
n Failures are a side-effect of using 

technology to solve complex problems!

Who needs failure “models”?

n Role of a failure model
n Lets us reduce fault-tolerance to a 

mathematical question
n In model M, can problem P be solved?
n How costly is it to do so?
n What are the best solutions?
n What tradeoffs arise?

n And clarifies what we are saying
n Lacking a model, confusion is common

Categories of failures

n Crash faults, message loss
n These are common in real systems
n Crash failures: process simply stops, and 

does nothing wrong that would be 
externally visible before it stops

n These faults can’t be directly detected

Categories of failures

n Fail-stop failures
n These require system support
n Idea is that the process fails by crashing, 

and the system notifies anyone who was 
talking to it

n With fail-stop failures we can overcome 
message loss by just resending packets, 
which must be uniquely numbered

n Easy to work with… but rarely supported
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Categories of failures

n Non-malicious Byzantine failures
n This is the best way to understand many 

kinds of corruption and buggy behaviors
n Program can do pretty much anything, 

including sending corrupted messages
n But it doesn’t do so with the intention of 

screwing up our protocols
n Unfortunately, a pretty common mode 

of failure

Categories of failure

n Malicious, true Byzantine, failures
n Model is of an attacker who has studied the 

system and wants to break it
n She can corrupt or replay messages, intercept 

them at will, compromise programs and substitute 
hacked versions

n This is a worst-case scenario mindset
n In practice, doesn’t actually happen
n Very costly to defend against; typically used in 

very limited ways (e.g. key mgt. server)

Models of failure

n Question here concerns how failures 
appear in formal models used when 
proving things about protocols

n Think back to Lamport’s happens-before 
relationship, →
n Model already has processes, messages, 

temporal ordering
n Assumes messages are reliably delivered

Recall: Two kinds of models

n We tend to work within two models
n Asynchronous model makes no 

assumptions about time
n Lamport’s model is a good fit
n Processes have no clocks, will wait indefinitely 

for messages, could run arbitrarily fast/slow
n Distributed computing at an “eons” timescale

n Synchronous model assumes a lock-step 
execution in which processes share a clock

Adding failures in Lamport’s model

n Also called the asynchronous model
n Normally we just assume that a failed process 

“crashes:” it stops doing anything
n Notice that in this model, a failed process is 

indistinguishable from a delayed process

n In fact, the decision that something has failed 
takes on an arbitrary flavor
n Suppose that at point e in its execution, process p 

decides to treat q as faulty….”

What about the synchronous model?

n Here, we also have processes and messages
n But communication is usually assumed to be 

reliable: any message sent at time t is delivered 
by time t+δ

n Algorithms are often structured into rounds, each 
lasting some fixed amount of time ∆, giving time 
for each process to communicate with every other 
process

n In this model, a crash failure is easily detected
n When people have considered malicious 

failures, they often used this model 
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Neither model is realistic

n Value of the asynchronous model is that it is 
so stripped down and simple
n If we can do something “well” in this model we 

can do at least as well in the real world
n So we’ll want “best” solutions

n Value of the synchronous model is that it 
adds a lot of “unrealistic” mechanism
n If we can’t solve a problem with all this help, we 

probably can’t solve it in a more realistic setting!
n So seek impossibility results

Examples of results

n We saw an algorithm for taking a global 
snapshot in an asynchronous system

n And it is common to look at problems 
like agreeing on an ordering
n Often reduced to “agreeing on a bit” (0/1)
n To make this non-trivial, we assume that 

processes have an input and must pick 
some legitimate input value

Connection to consistency

n We started by talking about consistency
n We found that many (not all) notions of 

consistency reduce to forms of agreement 
on the events that occurred and their order

n Could imagine that our “bit” represents
n Whether or not a particular event took place
n Whether event A is the “next” event

n Thus fault-tolerant consensus is deeply 
related to fault-tolerant consistency

Fischer, Lynch and Patterson

n A surprising result
n Impossibility of Asynchronous Distributed 

Consensus with a Single Faulty Process

n They prove that no asynchronous algorithm 
for agreeing on a one-bit value can guarantee 
that it will terminate in the presence of crash 
faults
n And this is true even if no crash actually occurs!

n Proof constructs infinite non-terminating runs

Core of FLP result

n They start by looking at a system with 
inputs that are all the same
n All 0’s must decide 0, all 1’s decides 1

n Now they explore mixtures of inputs 
and find some initial set of inputs with 
an uncertain (“bivalent”) outcome

n They focus on this bivalent state

Bivalent state

System 
starts in S*

Events can 
take it to 
state S1

Events can 
take it to 
state S0

S* denotes bivalent state
S0 denotes a decision 0 state
S1 denotes a decision 1 state

Sooner or later all executions 
decide 0

Sooner or later all executions 
decide 1
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Bivalent state

System 
starts in S*

Events can 
take it to 
state S1

Events can 
take it to 
state S0

e

e is a critical event that 
takes us from a bivalent 

to a univalent state: 
eventually we’ll “decide” 0

Bivalent state

System 
starts in S*

Events can 
take it to 
state S1

Events can 
take it to 
state S0

They delay e and show 
that there is a situation in 

which the system will 
return to a bivalent state

S’
*

Bivalent state

System 
starts in S*

Events can 
take it to 
state S1

Events can 
take it to 
state S0 S’

*

In this new state they 
show that we can deliver 
e and that now, the new 
state will still be bivalent!

S’’
*

e

Bivalent state

System 
starts in S*

Events can 
take it to 
state S1

Events can 
take it to 
state S0 S’

*

Notice that we made the 
system do some work and 
yet it ended up back in an 
“uncertain” state.  We can 

do this again and again

S’’
*

e

Core of FLP result in words

n In an initially bivalent state, they look at 
some execution that would lead to a 
decision state, say “0”
n At some step this run switches from 

bivalent to univalent, when some process 
receives some message m

n They now explore executions in which m is 
delayed

Core of FLP result

n So:
n Initially in a bivalent state
n Delivery of m would make us univalent but we delay m
n They show that if the protocol is fault-tolerant there must be 

a run that leads to the other univalent state
n And they show that you can deliver m in this run without a 

decision being made
n This proves the result: they show that a bivalent 

system can be forced to do some work and yet 
remain in a bivalent state.
n If this is true once, it is true as often as we like
n In effect: we can delay decisions indefinitely
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But how did they “really” do it?

n Our picture just gives the basic idea
n Their proof actually proves that there is 

a way to force the execution to follow 
this tortured path

n But the result is very theoretical…
n … to much so for us in CS514

n So we’ll skip the real details

Intuition behind this result?

n Think of a real system trying to agree on 
something in which process p plays a key role

n But the system is fault-tolerant: if p crashes it 
adapts and moves on

n Their proof “tricks” the system into treating p 
as if it had failed, but then lets p resume 
execution and “rejoin”

n This takes time… and no real progress occurs

But what did “impossibility” mean?

n In formal proofs, an algorithm is totally correct if
n It computes the right thing
n And it always terminates

n When we say something is possible, we mean “there 
is a totally correct algorithm” solving the problem

n FLP proves that any fault-tolerant algorithm solving 
consensus has runs that never terminate
n These runs are extremely unlikely (“probability zero”)
n Yet they imply that we can’t find a totally correct solution
n And so “consensus is impossible” ( “not always possible”)

Recap

n We have an asynchronous model with crash failures
n A bit like the real world!

n In this model we know how to do some things
n Tracking “happens before” & making a consistent snapshot
n Later we’ll find ways to do ordered multicast and implement 

replicated data and even solve consensus
n But now we also know that there will always be 

scenarios in which our solutions can’t make progress
n Often can engineer system to make them extremely unlikely
n Impossibility doesn’t mean these solutions are wrong – only 

that they live within this limit  

Tougher failure models

n We’ve focused on crash failures
n In the synchronous model these look like a 

“farewell cruel world” message

n Some call it the “failstop model”.  A faulty process 
is viewed as first saying goodbye, then crashing

n What about tougher kinds of failures?
n Corrupted messages

n Processes that don’t follow the algorithm
n Malicious processes out to cause havoc?

Here the situation is much harder

n Generally we need at least 3f+1 
processes in a system to tolerate f 
Byzantine failures
n For example, to tolerate 1 failure we need 

4 or more processes
n We also need f+1 “rounds”
n Let’s see why this happens
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Byzantine scenario

n Generals (N of them) surround a city
n They communicate by courier

n Each has an opinion: “attack” or “wait”
n In fact, an attack would succeed: the city will fall.
n Waiting will succeed too: the city will surrender.  
n But if some attack and some wait, disaster ensues

n Some Generals (f of them) are traitors… it 
doesn’t matter if they attack or wait, but we 
must prevent them from disrupting the battle
n Traitor can’t forge messages from other Generals

Byzantine scenario

Attack!

Wait…

Attack!

Attack! 
No, wait!  

Surrender!

Wait…

A timeline perspective

n Suppose that p and q favor attack, r is 
a traitor and s and t favor waiting… 
assume that in a tie vote, we attack

p

q

r

s

t

A timeline perspective

n After first round collected votes are:
n {attack, attack, wait, wait, traitor’s-vote}

p

q

r

s

t

What can the traitor do?

n Add a legitimate vote of “attack”
n Anyone with 3 votes to attack knows the 

outcome

n Add a legitimate vote of “wait”
n Vote now favors “wait”

n Or send different votes to different folks
n Or don’t send a vote, at all, to some

Outcomes?

n Traitor simply votes:
n Either all see {a,a,a,w,w }
n Or all see {a,a,w,w,w }

n Traitor double-votes
n Some see {a,a,a,w,w } and some {a,a,w,w,w }

n Traitor withholds some vote(s)
n Some see {a,a,w,w }, perhaps others see 

{a,a,a,w,w ,} and still others see {a,a,w,w,w }
n Notice that traitor can’t manipulate votes of 

loyal Generals!
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What can we do?

n Clearly we can’t decide yet; some loyal 
Generals might have contradictory data
n In fact if anyone has 3 votes to attack, they can 

already “decide”.
n Similarly, anyone with just 4 votes can decide
n But with 3 votes to “wait” a General isn’t sure 

(one could be a traitor…)

n So: in round 2, each sends out “witness” 
messages: here’s what I saw in round 1
n General Smith send me: “attack (signed) Smith”

Digital signatures

n These require a cryptographic system
n For example, RSA
n Each player has a secret (private) key K-1

and a public key K.  
n She can publish her public key

n RSA gives us a single “encrypt” function:
n Encrypt(Encrypt(M,K),K-1) = 

Encrypt(Encrypt(M,K-1),K) = M
n Encrypt a hash of the message to “sign” it

With such a system

n A can send a message to B that only A could 
have sent
n A just encrypts the body with her private key

n … or one that only B can read
n A encrypts it with B’s public key

n Or can sign it as proof she sent it
n B can recompute the signature and decrypt A’s 

hashed signature to see if they match
n These capabilities limit what our traitor can 

do: he can’t forge or modify a message

A timeline perspective

n In second round if the traitor didn’t 
behave identically for all Generals, we 
can weed out his faulty votes

p

q

r

s

t

A timeline perspective

n We attack!

p

q

r

s

t

Attack!!

Attack!!

Attack!!

Attack!!

Damn!  They’re on to me

Traitor is stymied

n Our loyal generals can deduce that the 
decision was to attack

n Traitor can’t disrupt this…
n Either forced to vote legitimately, or is caught

n But costs were steep!
n (f+1)*n2 ,messages!
n Rounds can also be slow….

n “Early stopping” protocols: min(t+2, f+1) rounds; 
t is true number of faults
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Recent work with Byzantine model

n Focus is typically on using it to secure 
particularly sensitive, ultra-critical services
n For example the “certification authority” that 

hands out keys in a domain
n Or a database maintaining top-secret data

n Researchers have suggested that for such 
purposes, a “Byzantine Quorum” approach 
can work well

n They are implementing this in real systems by 
simulating rounds using various tricks

Byzantine Quorums

n Arrange servers into a √ n x √n array
n Idea is that any row or column is a quorum

n Then use Byzantine Agreement to access that 
quorum, doing a read or a write

n Separately, Castro and Liskov have tackled a 
related problem, using BA to secure a file 
server
n By keeping BA out of the critical path, can avoid 

most of the delay BA normally imposes

Split secrets

n In fact BA algorithms are just the tip of a 
broader “coding theory” iceberg

n One exciting idea is called a “split secret”
n Idea is to spread a secret among n servers so that 

any k can reconstruct the secret, but no individual 
actually has all the bits

n Protocol lets the client obtain the “shares” without 
the servers seeing one-another’s messages

n The servers keep but can’t read the secret! 

n Question: In what ways is this better than 
just encrypting a secret?

How split secrets work

n They build on a famous result
n With k+1 distinct points you can uniquely identify 

an order-k polynomial
n i.e 2 points determine a line
n 3 points determine a unique quadratic

n The polynomial is the “secret”

n And the servers themselves have the points – the 
“shares”

n With coding theory the shares are made just 
redundant enough to overcome n-k faults

Byzantine Broadcast (BB)

n Many classical research results use 
Byzantine Agreement to implement a 
form of fault-tolerant multicast
n To send a message I initiate “agreement” 

on that message
n We end up agreeing on content and 

ordering w.r.t. other messages
n Used as a primitive in many published 

papers

Pros and cons to BB

n On the positive side, the primitive is very 
powerful
n For example this is the core of the Castro and 

Liskov technique

n But on the negative side, BB is slow
n We’ll see ways of doing fault-tolerant multicast 

that run at 150,000 small messages per second
n BB: more like 5 or 10 per second

n The right choice for infrequent, very sensitive 
actions… but wrong if performance matters
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Take-aways?

n Fault-tolerance matters in many systems
n But we need to agree on what a “fault” is
n Extreme models lead to high costs!

n Common to reduce fault-tolerance to some 
form of data or “state” replication
n In this case fault-tolerance is often provided by 

some form of broadcast
n Mechanism for detecting faults is also important in 

many systems.  
n Timeout is common… but can behave inconsistently  
n “View change” notification is used in some systems.  

They typically implement a fault agreement protocol.


