
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Transactions
n The most important reliability technology for

client-server systems
n Now start an in-depth examination of the

topic
n How transactional systems really work
n Implementation considerations
n Limitations and performance challenges
n Scalability of transactional systems

n This will span several lectures

Transactions

n There are several perspectives on how to
achieve reliability
n One approach focuses on reliability of

communication channels and leaves application-
oriented issues to the client or server – “stateless”

n Major alternative is to focus on the data managed
by a system. Stateful version yields transactional
system

n A third option exploits non-transactional
replication. We’ll look at it later

Transactions on a single
database:

n In a client/server architecture,
n A transaction is an execution of a single

program of the application(client) at the
server.
n Seen at the server as a series of reads and writes.

n We want this setup to work when
n There are multiple simultaneous client

transactions running at the server.
n Client/Server could fail at any time.

Transactions –
The ACID Properties
n Are the four desirable properties for reliable handling of

concurrent transactions.
n Atomicity

n The “All or Nothing” behavior.
n Consistency

n Each transaction must preserve consistency.
n Isolation (Serializability)

n Concurrent transaction execution should be equivalent
(in effect) to a serialized execution.

n Durability
n Once a transaction is done, it stays done.

Transactions in the real world

n In cs514 lectures, transactions are treated at
the same level as other techniques

n But in the real world, transactions represent a
huge chunk (in $ value) of the existing
market for distributed systems!
n The web is gradually starting to shift the balance (not by

reducing the size of the transaction market but by growing
so fast that it is catching up)

n But even on the web, we use transactions when we buy
products

2

The transactional model
n Applications are coded in a stylized way:

n begin transaction
n Perform a series of read, update operations
n Terminate by commit or abort.

n Terminology
n The application is the transaction manager
n The data manager is presented with operations

from concurrently active transactions
n It schedules them in an interleaved but serializable

order

A side remark

n Each transaction is built up incrementally
n Application runs

n And as it runs, it issues operations
n The data manager sees them one by one

n But often we talk as if we knew the whole
thing at one time
n We’re careful to do this in ways that make sense
n In any case, we usually don’t need to say anything

until a “commit” is issued

Transaction and Data
Managers

Transactions

read
update

read

update

transactions are stateful: transaction “knows” about
database contents and updates

Data (and Lock) Managers

Typical transactional program

begin transaction;
x = read(“x-values”,);
y = read(“y-values”,);
z = x+y;
write(“z-values”, z,);

commit transaction;

What about the locks?
n Unlike other kinds of distributed systems,

transactional systems typically lock the data
they access

n They obtain these locks as they run:
n Before accessing “x” get a lock on “x”
n Usually we assume that the application knows

enough to get the right kind of lock. It is not
good to get a read lock if you’ll later need to
update the object

n In clever applications, one lock will often
cover many objects

Locking rule

n Suppose that transaction T will access
object x.
n We need to know that first, T gets a lock

that “covers” x

n What does coverage entail?
n We need to know that if any other

transaction T’ tries to access x it will
attempt to get the same lock

3

Examples of lock coverage
n We could have one lock per object
n … or one lock for the whole database

n … or one lock for a category of objects
n In a tree, we could have one lock for the whole tree

associated with the root
n In a table we could have one lock for row, or one for each

column, or one for the whole table

n All transactions must use the same rules!
n And if you will update the object, the lock must be a

“write” lock, not a “read” lock

Transactional Execution Log

n As the transaction runs, it creates a history of
its actions. Suppose we were to write down
the sequence of operations it performs.

n Data manager does this, one by one
n This yields a “schedule”

n Operations and order they executed

n Can infer order in which transactions ran

n Scheduling is called “concurrency control”

Observations

n Program runs “by itself”, doesn’t talk to
others

n All the work is done in one program, in
straight-line fashion. If an application
requires running several programs, like a C
compilation, it would run as several separate
transactions!

n The persistent data is maintained in files or
database relations external to the application

Serializability

n Means that effect of the interleaved execution
is indistinguishable from some possible serial
execution of the committed transactions

n For example: T1 and T2 are interleaved but it
“looks like” T2 ran before T1

n Idea is that transactions can be coded to be
correct if run in isolation, and yet will run
correctly when executed concurrently (and
hence gain a speedup)

Need for serializable execution

Data manager interleaves operations to improve concurrency

DB: R1 (X) R2 (X) W2 (X)R1(Y) W1 (X) W2 (Y) commit 1commit 2

T1 : R1 (X) R1 (Y) W1 (X) commit 1

T2 : R2 (X) W2(X) W2 (Y) commit 2

Non serializable execution

Problem: transactions may “interfere”. Here, T2 changes x,
hence T1 should have either run first (read and write) or after
(reading the changed value).

Unsafe! Not serializable

DB: R1 (X) R2 (X) W2 (X)R1(Y) W1 (X) W2 (Y) commit 2commit 1

T1 : R1 (X) R1 (Y) W1 (X) commit 1

T2 : R2 (X) W2(X) W2 (Y) commit 2

4

Serializable execution

Data manager interleaves operations to improve concurrency but
schedules them so that it looks as if one transaction ran at a t ime.
This schedule “looks” like T2 ran first.

DB: R2 (X) W2(X) R1 (X) W 1(X) W2(Y) R1 (Y) commit 2 commit 1

T1 : R1 (X) R1 (Y) W1 (X) commit 1

T2 : R2 (X) W2(X) W2 (Y) commit 2

Atomicity considerations

n If application (“transaction manager”)
crashes, treat as an abort

n If data manager crashes, abort any non-
committed transactions, but committed state
is persistent
n Aborted transactions leave no effect, either in

database itself or in terms of indirect side-effects
n Only need to consider committed operations in

determining serializability

How can data manager sort
out the operations?
n We need a way to distinguish different

transactions
n In example, T 1 and T 2

n Solve this by requiring an agreed upon RPC
argument list (“interface”)
n Each operation is an RPC from the transaction mgr

to the data mgr
n Arguments include the transaction “id”

n Major products like NT 6.0 standardize these
interfaces

Components of transactional
system

n Runtime environment: responsible for
assigning transaction id’s and labeling each
operation with the correct id.

n Concurrency control subsystem: responsible
for scheduling operations so that outcome will
be serializable

n Data manager: responsible for implementing
the database storage and retrieval functions

Transactions at a “single”
database

n Normally use 2-phase locking or
timestamps for concurrency control

n Intentions list tracks “intended updates”
for each active transaction

n Write-ahead log used to ensure all-or-
nothing aspect of commit operations

n Can achieve thousands of transactions
per second

Strict Two-phase locking:
how it works
n Transaction must have a lock on each data

item it will access.
n Gets a “write lock” if it will (ever) update the item
n Use “read lock” if it will (only) read the item.

Can’t change its mind!

n Obtains all the locks it needs while it runs and
hold onto them even if no longer needed

n Releases locks only after making
commit/abort decision and only after updates
are persistent

5

Why do we call it
“Strict” “two phase”?

n 2-phase locking: Locks only acquired during
the ‘growing’ phase, only released during the
‘shrinking’ phase.

n Strict: Locks are only released after the
commit decision
n Read locks don’t conflict with each other (hence T’

can read x even if T holds a read lock on x)
n Update locks conflict with everything (are

“exclusive”)

Strict Two-phase Locking

T1: begin read(x) read(y) write(x) commit

T2: begin read(x) write(x) write(y) commit

Acquires locks
Releases locks

Notes

n Notice that locks must be kept even if
the same objects won’t be revisited
n This can be a problem in long-running

applications!
n Also becomes an issue in systems that

crash and then recover
n Often, they “forget” locks when this happens
n Called “broken locks”. We say that a crash

may “break” current locks…

Why does strict 2PL imply
serializability?
n Suppose that T’ will perform an operation

that conflicts with an operation that T has
done:
n T’ will update data item X that T read or updated
n T updated item Y and T’ will read or update it

n T must have had a lock on X/Y that conflicts
with the lock that T’ wants

n T won’t release it until it commits or aborts
n So T’ will wait until T commits or aborts

Acyclic conflict graph implies
serializability

n Can represent conflicts between
operations and between locks by a
graph (e.g. first T1 reads x and then T2
writes x)

n If this graph is acyclic, can easily show
that transactions are serializable

n Two-phase locking produces acyclic
conflict graphs

Two-phase locking is
“pessimistic”

n Acts to prevent non-serializable schedules
from arising: pessimistically assumes conflicts
are fairly likely

n Can deadlock, e.g. T1 reads x then writes y;
T2 reads y then writes x. This doesn’t always
deadlock but it is capable of deadlocking
n Overcome by aborting if we wait for too long,
n Or by designing transactions to obtain locks in a

known and agreed upon ordering

6

Contrast: Timestamped
approach

n Using a fine-grained clock, assign a “time” to
each transaction, uniquely. E.g. T1 is at time
1, T2 is at time 2

n Now data manager tracks temporal history of
each data item, responds to requests as if
they had occured at time given by timestamp

n At commit stage, make sure that commit is
consistent with serializability and, if not, abort

Example of when we abort

n T1 runs, updates x, setting to 3
n T2 runs concurrently but has a larger

timestamp. It reads x=3
n T1 eventually aborts
n ... T2 must abort too, since it read a value of

x that is no longer a committed value
n Called a cascaded abort since abort of T 1 triggers

abort of T 2

Pros and cons of approaches

n Locking scheme works best when conflicts
between transactions are common and
transactions are short-running

n Timestamped scheme works best when
conflicts are rare and transactions are
relatively long-running

n Weihl has suggested hybrid approaches but
these are not common in real systems

Intentions list concept

n Idea is to separate persistent state of
database from the updates that have
been done but have yet to commit

n Intensions list may simply be the in-
memory cached database state

n Say that transactions intends to commit
these updates, if indeed it commits

Role of write-ahead log

n Used to save either old or new state of
database to either permit abort by rollback
(need old state) or to ensure that commit is
all-or-nothing (by being able to repeat
updates until all are completed)

n Rule is that log must be written before
database is modified

n After commit record is persistently stored and
all updates are done, can erase log contents

Structure of a transactional
system

application

cache (volatile) lock records

updates (persistent)

database
log

7

Recovery?
n Transactional data manager reboots
n It rescans the log

n Ignores non-committed transactions
n Reapplies any updates
n These must be “idempotent”

n Can be repeated many times with exactly the same
effect as a single time

n E.g. x := 3, but not x := x.prev+1

n Then clears log records
n (In normal use, log records are deleted once

transaction commits)

Transactions in distributed
systems

n Notice that client and data manager might not
run on same computer
n Both may not fail at same time
n Also, either could timeout waiting for the other in

normal situations

n When this happens, we normally abort the
transaction
n Exception is a timeout that occurs while commit is

being processed
n If server fails, one effect of crash is to break locks

even for read-only access

Transactions in distributed
systems

n What if data is on multiple servers?
n In a non-distributed system, transactions

run against a single database system
n Indeed, many systems structured to use just a

single operation – a “one shot” transaction!

n In distributed systems may want one
application to talk to multiple databases

Transactions in distributed
systems

n Main issue that arises is that now we can have
multiple database servers that are touched by
one transaction

n Reasons?
n Data spread around: each owns subset
n Could have replicated some data object on multiple

servers, e.g. to load-balance read access for large
client set

n Might do this for high availability

n Solve using 2-phase commit protocol!

Two-phase commit in
transactions
n Phase 1: transaction wishes to commit. Data

managers force updates and lock records to
the disk (e.g. to the log) and then say
prepared to commit

n Transaction manager makes sure all are
prepared, then says commit (or abort, if
some are not)

n Data managers then make updates
permanent or rollback to old values, and
release locks

Commit protocol illustrated

ok to commit?

8

Commit protocol illustrated

ok to commit?

ok with uscommit

Note: garbage collection protocol not shown here

Unilateral abort
n Any data manager can unilaterally abort a transaction

until it has said “prepared”

n Useful if transaction manager seems to have failed
n Also arises if data manager crashes and restarts

(hence will have lost any non-persistent intended
updates and locks)

n Implication: even a data manager where only reads
were done must participate in 2PC protocol!

Notes on 2PC

n Although protocol looks trivial we’ll
revisit it later and will find it more
subtle than meets the eye!

n Not a cheap protocol
n Considered costly because of latency: few

systems can pay this price
n Hence most “real” systems run

transactions only against a single server

Coming next

n More on transactions
n Transactions in WebServices
n Issues of availability in transactional systems
n Using transactions in “real” network settings

n Book: read chapter on transactions

