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CS514: Intermediate Course 
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Transactions
n The most important reliability technology for 

client-server systems
n Now start an in-depth examination of the 

topic
n How transactional systems really work
n Implementation considerations
n Limitations and performance challenges
n Scalability of transactional systems

n This will span several lectures

Transactions

n There are several perspectives on how to 
achieve reliability
n One approach focuses on reliability of 

communication channels and leaves application-
oriented issues to the client or server – “stateless”

n Major alternative is to focus on the data managed 
by a system.  Stateful version yields transactional 
system

n A third option exploits non-transactional 
replication.  We’ll look at it later

Transactions on a single 
database:

n In a client/server architecture,
n A transaction is an execution of a single 

program of the application(client) at the 
server.
n Seen at the server as a series of reads and writes.

n We want this setup to work when
n There are multiple simultaneous client 

transactions running at the server.
n Client/Server could fail at any time.

Transactions –
The ACID Properties
n Are the four desirable properties for reliable handling of 

concurrent transactions.
n Atomicity

n The “All or Nothing” behavior.
n Consistency

n Each transaction must preserve consistency.
n Isolation (Serializability)

n Concurrent transaction execution should be equivalent 
(in effect) to a serialized execution.

n Durability
n Once a transaction is done, it stays done.

Transactions in the real world

n In cs514 lectures, transactions are treated at 
the same level as other techniques

n But in the real world, transactions represent a 
huge chunk (in $ value) of the existing 
market for distributed systems!
n The web is gradually starting to shift the balance (not by 

reducing the size of the transaction market but by growing 
so fast that it is catching up)

n But even on the web, we use transactions when we buy 
products
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The transactional model
n Applications are coded in a stylized way:

n begin transaction
n Perform a series of read, update operations
n Terminate by commit or abort.  

n Terminology
n The application is the transaction manager
n The data manager is presented with operations 

from concurrently active transactions
n It schedules them in an interleaved but serializable

order

A side remark

n Each transaction is built up incrementally
n Application runs

n And as it runs, it issues operations
n The data manager sees them one by one

n But often we talk as if we knew the whole 
thing at one time
n We’re careful to do this in ways that make sense
n In any case, we usually don’t need to say anything 

until a “commit” is issued

Transaction and Data 
Managers

Transactions

read
update

read

update

transactions are stateful: transaction “knows” about 
database contents and updates

Data (and Lock) Managers

Typical transactional program

begin transaction;
x = read(“x-values”, ....);
y = read(“y-values”, ....);
z = x+y;
write(“z-values”, z, ....);

commit transaction;

What about the locks?
n Unlike other kinds of distributed systems, 

transactional systems typically lock the data 
they access

n They obtain these locks as they run:
n Before accessing “x” get a lock on “x”
n Usually we assume that the application knows 

enough to get the right kind of lock.  It is not 
good to get a read lock if you’ll later need to 
update the object

n In clever applications, one lock will often 
cover many objects

Locking rule

n Suppose that transaction T will access 
object x.
n We need to know that first, T gets a lock 

that “covers” x

n What does coverage entail?
n We need to know that if any other 

transaction T’ tries to access x it will 
attempt to get the same lock
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Examples of lock coverage
n We could have one lock per object
n … or one lock for the whole database

n … or one lock for a category of objects 
n In a tree, we could have one lock for the whole tree 

associated with the root
n In a table we could have one lock for row, or one for each 

column, or one for the whole table

n All transactions must use the same rules!
n And if you will update the object, the lock must be a 

“write” lock, not a “read” lock

Transactional Execution Log

n As the transaction runs, it creates a history of 
its actions.  Suppose we were to write down 
the sequence of operations it performs.

n Data manager does this, one by one
n This yields a “schedule” 

n Operations and order they executed

n Can infer order in which transactions ran

n Scheduling is called “concurrency control”

Observations

n Program runs “by itself”, doesn’t talk to 
others

n All the work is done in one program, in 
straight-line fashion.  If an application 
requires running several programs, like a C 
compilation, it would run as several separate 
transactions!

n The persistent data is maintained in files or 
database relations external to the application

Serializability

n Means that effect of the interleaved execution 
is indistinguishable from some possible serial 
execution of the committed transactions

n For example: T1 and T2 are interleaved but it 
“looks like” T2  ran before T1

n Idea is that transactions can be coded to be 
correct if run in isolation, and yet will run 
correctly when executed concurrently (and 
hence gain a speedup)

Need for serializable execution

Data manager interleaves operations to improve concurrency

DB:     R1 (X) R2 (X) W2 (X)R1(Y) W1 (X) W2 (Y) commit 1commit 2

T1 : R1 (X)  R1 (Y)  W1 (X) commit 1

T2 : R2 (X) W2(X) W2 (Y)  commit 2

Non serializable execution

Problem: transactions may “interfere”.  Here, T2 changes x, 
hence T1 should have either run first (read and write) or after 
(reading the changed value).  

Unsafe!  Not serializable

DB:     R1 (X) R2 (X) W2 (X)R1(Y) W1 (X) W2 (Y) commit 2commit 1

T1 :     R1 (X)  R1 (Y)  W1 (X) commit 1

T2 : R2 (X) W2(X) W2 (Y)  commit 2
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Serializable execution

Data manager interleaves operations to improve concurrency but 
schedules them so that it looks as if one transaction ran at a t ime.  
This schedule “looks” like T2 ran first.

DB:     R2 (X) W2(X) R1 (X) W 1(X) W2(Y) R1 (Y) commit 2 commit 1

T1 :     R1 (X)  R1 (Y)  W1 (X) commit 1

T2 : R2 (X) W2(X) W2 (Y)  commit 2

Atomicity considerations

n If application (“transaction manager”) 
crashes, treat as an abort

n If data manager crashes, abort any non-
committed transactions, but committed state 
is persistent 
n Aborted transactions leave no effect, either in 

database itself or in terms of indirect side-effects
n Only need to consider committed operations in 

determining serializability

How can data manager sort 
out the operations?
n We need a way to distinguish different 

transactions
n In example, T 1 and T 2

n Solve this by requiring an agreed upon RPC 
argument list (“interface”)
n Each operation is an RPC from the transaction mgr 

to the data mgr
n Arguments include the transaction “id”

n Major products like NT 6.0 standardize these 
interfaces

Components of transactional 
system

n Runtime environment: responsible for 
assigning transaction id’s and labeling each 
operation with the correct id.

n Concurrency control subsystem: responsible 
for scheduling operations so that outcome will 
be serializable

n Data manager: responsible for implementing 
the database storage and retrieval functions

Transactions at a “single” 
database

n Normally use 2-phase locking or 
timestamps for concurrency control

n Intentions list tracks “intended updates” 
for each active transaction

n Write-ahead log used to ensure all-or-
nothing aspect of commit operations

n Can achieve thousands of transactions 
per second

Strict Two-phase locking: 
how it works
n Transaction must have a lock on each data 

item it will access.  
n Gets a “write lock” if it will (ever) update the item
n Use “read lock” if it will (only) read the item.  

Can’t change its mind!

n Obtains all the locks it needs while it runs and 
hold onto them even if no longer needed

n Releases locks only after making 
commit/abort decision and only after updates 
are persistent
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Why do we call it 
“Strict” “two phase”?

n 2-phase locking: Locks only acquired during 
the ‘growing’ phase, only released during the 
‘shrinking’ phase.

n Strict: Locks are only released after the 
commit decision
n Read locks don’t conflict with each other (hence T’ 

can read x even if T holds a read lock on x)
n Update locks conflict with everything (are 

“exclusive”)

Strict Two-phase Locking

T1:     begin    read(x)    read(y)      write(x)    commit

T2:     begin    read(x)    write(x)     write(y)    commit

Acquires locks
Releases locks

Notes

n Notice that locks must be kept even if 
the same objects won’t be revisited 
n This can be a problem in long-running 

applications!
n Also becomes an issue in systems that 

crash and then recover
n Often, they “forget” locks when this happens
n Called “broken locks”.  We say that a crash 

may “break” current locks…

Why does strict 2PL imply 
serializability?
n Suppose that T’ will perform an operation 

that conflicts with an operation that T has 
done:
n T’ will update data item X that T read or updated
n T updated item Y and T’ will read or update it

n T must have had a lock on X/Y that conflicts 
with the lock that T’ wants

n T won’t release it until it commits or aborts
n So T’ will wait until T commits or aborts

Acyclic conflict graph implies 
serializability

n Can represent conflicts between 
operations and between locks by a 
graph (e.g. first T1 reads x and then T2 
writes x)

n If this graph is acyclic, can easily show 
that transactions are serializable

n Two-phase locking produces acyclic 
conflict graphs

Two-phase locking is 
“pessimistic”

n Acts to prevent non-serializable schedules 
from arising: pessimistically assumes conflicts 
are fairly likely

n Can deadlock, e.g. T1 reads x then writes y; 
T2 reads y then writes x.  This doesn’t always 
deadlock but it is capable of deadlocking
n Overcome by aborting if we wait for too long, 
n Or by designing transactions to obtain locks in a 

known and agreed upon ordering
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Contrast: Timestamped
approach

n Using a fine-grained clock, assign a “time” to 
each transaction, uniquely.  E.g. T1 is at time 
1, T2 is at time 2

n Now data manager tracks temporal history of 
each data item, responds to requests as if 
they had occured at time given by timestamp

n At commit stage, make sure that commit is 
consistent with serializability and, if not, abort

Example of when we abort

n T1 runs, updates x, setting to 3
n T2 runs concurrently but has a larger 

timestamp.  It reads x=3 
n T1 eventually aborts
n ... T2 must abort too, since it read a value of 

x that is no longer a committed value
n Called a cascaded abort since abort of T 1 triggers 

abort of T 2

Pros and cons of approaches

n Locking scheme works best when conflicts 
between transactions are common and 
transactions are short-running

n Timestamped scheme works best when 
conflicts are rare and transactions are 
relatively long-running

n Weihl has suggested hybrid approaches but 
these are not common in real systems

Intentions list concept

n Idea is to separate persistent state of 
database from the updates that have 
been done but have yet to commit

n Intensions list may simply be the in-
memory cached database state

n Say that transactions intends to commit 
these updates, if indeed it commits

Role of write-ahead log

n Used to save either old or new state of 
database to either permit abort by rollback 
(need old state) or to ensure that commit is 
all-or-nothing (by being able to repeat 
updates until all are completed)

n Rule is that log must be written before 
database is modified

n After commit record is persistently stored and 
all updates are done, can erase log contents

Structure of a transactional 
system

application

cache (volatile)          lock records

updates (persistent)

database
log
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Recovery?
n Transactional data manager reboots
n It rescans the log

n Ignores non-committed transactions
n Reapplies any updates
n These must be “idempotent”

n Can be repeated many times with exactly the same 
effect as a single time

n E.g. x := 3, but not x := x.prev+1

n Then clears log records 
n (In normal use, log records are deleted once 

transaction commits) 

Transactions in distributed 
systems

n Notice that client and data manager might not 
run on same computer
n Both may not fail at same time
n Also, either could timeout waiting for the other in 

normal situations

n When this happens, we normally abort the 
transaction
n Exception is a timeout that occurs while commit is 

being processed 
n If server fails, one effect of crash is to break locks 

even for read-only access

Transactions in distributed 
systems

n What if data is on multiple servers?
n In a non-distributed system, transactions 

run against a single database system
n Indeed, many systems structured to use just a 

single operation – a “one shot” transaction!

n In distributed systems may want one 
application to talk to multiple databases

Transactions in distributed 
systems

n Main issue that arises is that now we can have 
multiple database servers that are touched by 
one transaction

n Reasons?
n Data spread around: each owns subset
n Could have replicated some data object on multiple 

servers, e.g. to load-balance read access for large 
client set

n Might do this for high availability

n Solve using 2-phase commit protocol!

Two-phase commit in 
transactions
n Phase 1: transaction wishes to commit.  Data 

managers force updates and lock records to 
the disk (e.g. to the log) and then say 
prepared to commit

n Transaction manager makes sure all are 
prepared, then says commit (or abort, if 
some are not)

n Data managers then make updates 
permanent or rollback to old values, and 
release locks

Commit protocol illustrated

ok to commit?
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Commit protocol illustrated

ok to commit?

ok with uscommit

Note: garbage collection protocol not shown here

Unilateral abort
n Any data manager can unilaterally abort a transaction 

until it has said “prepared”

n Useful if transaction manager seems to have failed
n Also arises if data manager crashes and restarts 

(hence will have lost any non-persistent intended 
updates and locks)

n Implication: even a data manager where only reads 
were done must participate in 2PC protocol!

Notes on 2PC

n Although protocol looks trivial we’ll 
revisit it later and will find it more 
subtle than meets the eye!

n Not a cheap protocol 
n Considered costly because of latency: few 

systems can pay this price
n Hence most “real” systems run 

transactions only against a single server

Coming next

n More on transactions
n Transactions in WebServices 
n Issues of availability in transactional systems
n Using transactions in “real” network settings

n Book: read chapter on transactions


