
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Recall our discussion of time

n Logical clocks: represent part of →
relation, small overhead

n Vector clocks: accurately represent →
but more costly

n Wall clocks: tradeoff between precision
and accuracy.
n Rarely precise enough for use in protocols
n Hence often view time as an “add on”

Today: “Simultaneous” actions

n There are many situations in which we
want to talk about some form of
simultaneous event
n Our missile interceptor is one case
n But think about updating replicated data

n Perhaps we have multiple conflicting updates
n The need is to ensure that they will happen in

the same order at all copies
n This “looks” like a kind of simultaneous action

Temporal distortions

n Things can be complicated because we
can’t predict
n Message delays (they vary constantly)
n Execution speeds (often a process shares a

machine with many other tasks)
n Timing of external events

n Lamport looked at this question too

Temporal distortions

n What does “now” mean?
p0

a

f

e

p3

b

p2

p1
c

d

Temporal distortions

n What does “now” mean?
p0

a

f

e

p3

b

p2

p1
c

d

2

Temporal distortions

n Timelines can “stretch”…

n … caused by scheduling effects,
message delays, message loss…

p0
a

f

e

p3

b

p2

p1
c

d

Temporal distortions

n Timelines can “shrink”

n E.g. something lets a machine speed up

p0
a

f

e

p3

b

p2

p1
c

d

Temporal distortions

n Cuts represent instants of time.

n But not every “cut” makes sense
n Black cuts could occur but not gray ones.

p0
a

f

e

p3

b

p2

p1
c

d

Consistent cuts and snapshots

n Idea is to identify system states that
“might” have occurred in real-life
n Need to avoid capturing states in which a

message is received but nobody is shown
as having sent it

n This the problem with the gray cuts

Temporal distortions

n Red messages cross gray cuts “backwards”

p0
a

f

e

p3

b

p2

p1
c

d

Temporal distortions

n Red messages cross gray cuts “backwards”

n In a nutshell: the cut includes a
message that “was never sent”

p0
a

e

p3

b

p2

p1
c

3

Who cares?

n Suppose, for example, that we want to
do distributed deadlock detection
n System lets processes “wait” for actions by

other processes
n A process can only do one thing at a time
n A deadlock occurs if there is a circular wait

Deadlock detection “algorithm”

n p worries: perhaps we have a deadlock
n p is waiting for q, so sends “what’s your

state?”
n q, on receipt, is waiting for r, so sends

the same question… and r for s…. And s
is waiting on p.

Suppose we detect this state

n We see a cycle…

n … but is it a deadlock?

p q

s r

Waiting for

Waiting for

Waiting for Waiting for

Phantom deadlocks!

n Suppose system has a very high rate of
locking.

n Then perhaps a lock release message
“passed” a query message
n i.e. we see “q waiting for r” and “r waiting for s”

but in fact, by the time we checked r, q was no
longer waiting!

n In effect: we checked for deadlock on a gray
cut – an inconsistent cut.

Consistent cuts and snapshots

n Goal is to draw a line across the system
state such that
n Every message “received” by a process is

shown as having been sent by some other
process

n Some pending messages might still be in
communication channels

n A “cut” is the frontier of a “snapshot”

Chandy/Lamport Algorithm

n Assume that if pi can talk to pj they do so
using a lossless, FIFO connection

n Now think about logical clocks
n Suppose someone sets his clock way ahead and

triggers a “flood” of messages

n As these reach each process, it advances its own
time… eventually all do so.

n The point where time jumps forward is a
consistent cut across the system

4

Using logical clocks to make cuts

p0
a

f

e

p3

b

p2

p1
c

d

Message sets the time
forward by a “lot”

Algorithm requires FIFO channels: must
delay e until b has been delivered!

Using logical clocks to make cuts

p0
a

f

e

p3

b

p2

p1
c

d

“Cut” occurs at point
where time advanced

Turn idea into an algorithm

n To start a new snapshot, pi …
n Builds a message: “Pi is initiating snapshot k”.

n The tuple (pi, k) uniquely identifies the snapshot

n In general, on first learning about snapshot (pi, k), px
n Writes down its state: px’s contribution to the snapshot
n Starts “tape recorders” for all communication channels
n Forwards the message on all outgoing channels
n Stops “tape recorder” for a channel when a snapshot

message for (pi, k) is received on it
n Snapshot consists of all the local state contributions

and all the tape-recordings for the channels

Chandy/Lamport

n This algorithm, but implemented with
an outgoing flood, followed by an
incoming wave of snapshot
contributions

n Snapshot ends up accumulating at the
initiator, pi

n Algorithm doesn’t tolerate process
failures or message failures.

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

I want to start
a snapshot

5

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

p records local state

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

p starts monitoring
incoming channels

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

“contents of channel p-
y”

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

p floods message on
outgoing channels…

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q is done

6

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

zs

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

v

z

x

u

s

Chandy/Lamport

p

q
r

s

t

u

v

w

x
y

z

A network

q

v

w

z

x

u

s

y

r

Chandy/Lamport

p
q

r

s

t

u

v

w

x
y

z

A snapshot of a network

q

x

u

s

v

r

t

w

p

y

z

Done!

7

What’s in the “state”?

n In practice we only record things important to
the application running the algorithm, not the
“whole” state
n E.g. “locks currently held”, “lock release

messages”

n Idea is that the snapshot will be
n Easy to analyze, letting us build a picture of the

system state
n And will have everything that matters for our real

purpose, like deadlock detection

Other algorithms?

n Many algorithms have a consistent cut
mechanism hidden within
n More broadly we’ll see that notions of time

are sometimes explicit in algorithms
n But are often used as the insight that

motivated the developer
n By thinking about time, he or she was able

to reason about a protocol

n We’ll often use this approach

