
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Recap

n We’ve started a process of isolating
questions that arise in big systems
n Tease out an abstract issue
n Treat it separate from the original messy

context
n Try and understand what can and cannot

be done, and how to solve when
something can be done

So far?

n Naming and discovery
n Performance through threading, events,

ultimately clusters
n Notions of consistency that can and

cannot be solved
n Can’t achieve common knowledge
n But if we accept certain very limited risks

can often achieve reasonable goals

This and upcoming lectures?

n We’ll focus on concepts relating to time
n Time as it can be “used” in systems
n Systems that present behaviors best

understood in terms of temporal models
(notably the transactional model)

n Event ordering used to ensure consistency
in distributed systems (multicasts that
update replicated data or program state)

What time is it?

n In distributed system we need practical
ways to deal with time
n E.g. we may need to agree that update A

occurred before update B
n Or offer a “lease” on a resource that

expires at time 10:10.0150
n Or guarantee that a time critical event will

reach all interested parties within 100ms

But what does time “mean”?

n Time on a global clock?
n E.g. with GPS receiver

n … or on a machine’s local clock
n But was it set accurately?
n And could it drift, e.g. run fast or slow?
n What about faults, like stuck bits?

n … or could try to agree on time

2

Lamport’s approach

n Leslie Lamport suggested that we
should reduce time to its basics
n Time lets a system ask “Which came first:

event A or event B?”
n In effect: time is a means of labeling

events so that…
n If A happened before B, TIME(A) < TIME(B)
n If TIME(A) < TIME(B), A happened before B

Drawing time-line pictures:

p

m

sndp(m)

q
rcvq(m) delivq(m)

D

Drawing time-line pictures:

n A, B, C and D are “events”.
n Could be anything meaningful to the application
n So are snd(m) and rcv(m) and deliv(m)

n What ordering claims are meaningful?

p

m

A

C

B

sndp(m)

q
rcvq(m) delivq(m)

D

Drawing time-line pictures:

n A happens before B, and C before D
n “Local ordering” at a single process

n Write and

p

q

m

A

C

B

rcvq(m) delivq(m)

sndp(m)

BA
p

→ DC
q

→

D

Drawing time-line pictures:

n sndp(m) also happens before rcvq(m)
n “Distributed ordering” introduced by a message

n Write

p

q

m

A

C

B

rcvq(m) delivq(m)

sndp(m)

)m(rcv)m(snd q

M

p →

D

Drawing time-line pictures:

n A happens before D
n Transitivity: A happens before sndp(m), which

happens before rcv q(m), which happens before D

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

3

Drawing time-line pictures:

n B and D are concurrent
n Looks like B happens first, but D has no

way to know. No information flowed…

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

Happens before “relation”

n We’ll say that “A happens before B”,
written A→B, if

1. A →PB according to the local ordering, or

2. A is a snd and B is a rcv and A →MB, or
3. A and B are related under the transitive

closure of rules (1) and (2)

n So far, this is just a mathematical
notation, not a “systems tool”

Logical clocks

n A simple tool that can capture parts of
the happens before relation

n First version: uses just a single integer
n Designed for big (64-bit or more) counters
n Each process p maintains LTp, a local

counter
n A message m will carry LTm

Rules for managing logical clocks

n When an event happens at a process p it
increments LTp.
n Any event that matters to p

n Normally, also snd and rcv events (since we want
receive to occur “after” the matching send)

n When p sends m, set
n LTm = LTp

n When q receives m, set
n LTq = max(LT q, LTm)+1

Time-line with LT annotations

n LT(A) = 1, LT(sndp(m)) = 2, LT(m) = 2
n LT(rcv q(m))=max(1,2)+1=3, etc…

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

5543331111000LTq

3333222222110LTp

Logical clocks

n If A happens before B, A→B,
then LT(A)<LT(B)

n But converse might not be true:
n If LT(A)<LT(B) can’t be sure that A→B
n This is because processes that don’t

communicate still assign timestamps and
hence events will “seem” to have an order

4

Can we do better?

n One option is to use vector clocks
n Here we treat timestamps as a list

n One counter for each process

n Rules for managing vector times differ
from what did with logical clocks

Vector clocks

n Clock is a vector: e.g. VT(A)=[1, 0]
n We’ll just assign p index 0 and q index 1
n Vector clocks require either agreement on the

numbering, or that the actual process id’s be
included with the vector

n Rules for managing vector clock
n When event happens at p, increment V Tp[indexp]

n Normally, also increment for snd and rcv events
n When sending a message, set VT(m)=VTp

n When receiving, set VTq=max(VTq, VT(m))

Time-line with VT annotations

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

2
4

2
3

2
3

2
2

2
2

2
2

0
1

0
1

0
1

0
1

0
0

0
0

0
0

VTq

3
0

3
0

3
0

3
0

2
0

2
0

2
0

2
0

2
0

2
0

1
0

1
0

0
0

VTp

VT(m)=[2,0]

Could also be [1,0] if we decide not to increment the clock on a
snd event. Decision depends on how the timestamps will be used.

Rules for comparison of VTs

n We’ll say that VTA = VTB if
n ∀I, V TA[i] = V TB[i]

n And we’ll say that VTA < VTB if
n VTA = VTB but VTA ? VT B

n That is, for some i, V TA[i] < VTB[i]

n Examples?
n [2,4] = [2,4]
n [1,3] < [7,3]
n [1,3] is “incomparable” to [3,1]

Time-line with VT annotations

n VT(A)=[1,0]. VT(D)=[2,4]. So VT(A)<VT(D)
n VT(B)=[3,0]. So VT(B) and VT(D) are incomparable

p

q

m

D

A

C

B

rcvq(m) delivq(m)

sndp(m)

2
4

2
3

2
3

2
2

2
2

2
2

0
1

0
1

0
1

0
1

0
0

0
0

0
0

VTq

3
0

3
0

3
0

3
0

2
0

2
0

2
0

2
0

2
0

2
0

1
0

1
0

0
0

VTp

VT(m)=[2,0
]

Vector time and happens before

n If A→B, then VT(A)<VT(B)
n Write a chain of events from A to B

n Step by step the vector clocks get larger

n If VT(A)<VT(B) then A→B
n Two cases: if A and B both happen at same

process p, trivial

n If A happens at p and B at q, can trace the path
back by which q “learned” V TA[p]

n Otherwise A and B happened concurrently

5

Introducing “wall clock time”

n There are several options
n “Extend” a logical clock or vector clock with

the clock time and use it to break ties
n Makes meaningful statements like “B and D

were concurrent, although B occurred first”
n But unless clocks are closely synchronized such

statements could be erroneous!

n We use a clock synchronization algorithm
to reconcile differences between clocks on
various computers in the network

Synchronizing clocks

n Without help, clocks will often differ by
many milliseconds
n Problem is that when a machine downloads

time from a network clock it can’t be sure
what the delay was

n This is because the “uplink” and “downlink”
delays are often very different in a network

n Outright failures of clocks are rare…

Synchronizing clocks

n Suppose p synchronizes with time.windows.com and notes that 123 ms
elapsed while the protocol was running… what time is it now?

p

time.windows.com

What time is it?

09:23.02921

Delay: 123ms

Synchronizing clocks

n Options?
n P could guess that the delay was evenly split, but

this is rarely the case in WAN settings (downlink
speeds are higher)

n P could ignore the delay
n P could factor in only “certain” delay, e.g. if we

know that the link takes at least 5ms in each
direction. Works best with GPS time sources!

n In general can’t do better than uncertainty in
the link delay from the time source down to p

Consequences?

n In a network of processes, we must
assume that clocks are
n Not perfectly synchronized. Even GPS has

uncertainty, although small
n We say that clocks are “inaccurate”

n And clocks can drift during periods
between synchronizations
n Relative drift between clocks is their “precision”

Thought question

n We are building an anti-missile system
n Radar tells the interceptor where it should

be and what time to get there
n Do we want the radar and interceptor to

be as accurate as possible, or as precise as
possible?

6

Thought question

n We want them to agree on the time but
it isn’t important whether they are
accurate with respect to “true” time
n “Precision” matters more than “accuracy”
n Although for this, a GPS time source would

be the way to go
n Might achieve higher precision than we can

with an “internal” synchronization protocol!

Real systems?

n Typically, some “master clock” owner
periodically broadcasts the time

n Processes then update their clocks
n But they can drift between updates
n Hence we generally treat time as having

fairly low accuracy
n Often precision will be poor compared to

message round-trip times

Clock synchronization

n To optimize for precision we can
n Set all clocks from a GPS source or some other

time “broadcast” source
n Limited by uncertainty in downlink times

n Or run a protocol between the machines
n Many have been reported in the literature
n Precision limited by uncertainty in message delays
n Some can even overcome arbitrary failures in a subset of

the machines!

For next time

n Read the introduction to Chapter 14 to
be sure you are comfortable with
notions of time and with notation

n Chapter 22 looks at clock
synchronization

