
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Recap

n We started by thinking about Web Services
n Basically, a standardized architecture that clients

client systems talk to servers

n Uses XML and other Web protocols
n And will be widely popular (“ubiquitous”)

n Our goal is to build “trustworthy” systems
using these standard, off-the-shelf techniques

n So we started to look at the issues top down

Recap

n First we looked at naming/discovery
n We asked what decisions need to be made

n Client needs to pick the right service
n I want this particular database, or display device

n Service may have a high-level routing decision
n Send “East Coast” requests to the New Jersey center

n Service also makes lower-level decisions
n John Smith is doing a transaction; send requests to

the same node if possible to benefit from caching
n And finally the network does routing

Recap

n In the case of naming/discovery
n We observed that the architecture doesn’t

really offer “slots” for the associated logic
n Developers can solve these problems

n I.e. by using the DNS to redirect requests
n But the solutions feel like hacks

n Ideally one would wish that Web Services
tackled such issues.
n One day they will! But not for a decade…

Recap

n Next we looked at performance issues
n We imagined that we’re building a service

and want to increase load on it
n Led us to think about threading, staged

event queuing (SEDA)
n Eventually leads us to a clustered

architecture with load-balancers

n Again, found that WS lacks key features

Trustworthy Web Services

n To have confidence in solutions we
need rigorous technical answers
n To questions like “tracking membership” or

“data replication” or “recovery after crash”

n And we need these embodied into WS
n For example, would want best-of-breed

answers in some sort of discovery “tool”
that applications can exploit

2

Trustworthy Computing

n Overall, we want to feel confident that
the systems we build are “trustworthy”

n But what should this mean, and how
realistic a goal is it?

n Today
n Discuss some interpretations of the term
n Settle on the “model” within which we’ll

work during the remainder of the term

Categories of systems…

n Roles computing systems play vary
widely
n Most computing systems aren’t critical in a

minute-by-minute sense
n … but some systems matter more; if they

are down, the enterprise is losing money
n … and very rarely, we need to build ultra-

reliable systems for mission-critical uses

Examples

Fly-by-wire control
system for airplane

Military weapons
targeting system

Microsoft.com
website

Less “critical” More “critical”

Be
ni

gn
 t

hr
ea

ts
M

al
ic

io
us

 a
tt

ac
k

Hospital billing
system

Control of electric
power grid

Authentication
system of a

campus network
Our focus

Techniques vary!

n Less critical systems that face accident (not
attack) lend themselves to cheaper solutions
n Particularly if we don’t mind outages when

something crashes
n High or continuous availability is harder

n The mixture of time-critical, very secure, very
high availability is particularly difficult
n Solutions don’t integrate well with standard tools

n “Secure and highly available” can also be slow

Importance of “COTS”

n The term means “commercial off the shelf”
n To understand importance of COTS we need

to understand history of computing
n Prior to 1980, “roll your own” was common
n But then with CORBA (and its predecessors) well-

supported standards won the day
n Productivity benefits of using standards are

enormous: better development tools, better
system management support, better feature sets

n Today, most projects mandate COTS

The dilemma

n But major products have been relaxed about:
n Many aspects of security

n Reliability
n Time-critical computing (not the same as “fast”)

n Jim Gray: “Microsoft is mostly interested in
multi-billion dollar markets. And it isn’t
feasible to make 100% of our customers
happy. If we can make 80% of them happy
90% of the time, we’re doing just fine.”

3

Are COTS trustworthy?

n Security is improving but still pretty weak
n Data is rarely protected “on the wire”

n Systems are not designed with the threat of overt
attack in mind

n Often limited to perimeter security; if the attacker
gets past the firewall, she’s home free

n Auditing and system management functions
are frequently inadequate

Are COTS trustworthy?

n Most COTS technologies do anticipate crashes
and the need to restart
n You can usually ask the system to watch your

application and relaunch after failure
n You can even ask for a restart on a different

node… but there won’t be any protection against
split-brain problems

n So-called “transactional” model can help
n Alternatively can make checkpoints, or replicate

critical data, but without platform help

Is this enough?

n The way COTS systems provide restart is
potentially slow
n Transactional “model” can’t offer high availability

(we’ll see why later)
n Often must wait for failed machine to reboot,

clean up its data structures, relaunch its main
applications, etc

n In big commercial systems could be minutes
or even hours

n Not enough… if we want high availability

Are COTS trustworthy?

n Security… reliability… what about:
n Time-critical applications, where we want

to guarantee a response within some
bounded time (and know that the
application is fast enough… but worry
about platform overheads and delays)

n Issues of system administration and
management and upgrade

SoS and SOAs

n The trend is towards
n Systems of Systems (SoS): federation of

big existing technologies
n Service Oriented Architectures (SOAs).

n Object oriented or Web Services systems
n Components declare their interfaces using an

interface definition language (IDL) or a
description language (WSDL)

n Implementation is “hidden” from clients

Example: the Air Force JBI

Decision-Quality Information

Globally Interoperable Information “Space” that …

Aggregates,
fuses, and

disseminates
tailored

battlespace
information

to all
echelons of

a JTF

Links JTF
sensors,

systems &
users

together
for unity
of effort

Integrates
legacy C2
resources

Focuses on
Decision-Making

Enables Affordable
Technology Refresh

Leverages Emerging
Commercial Technologies

4

Inside the Battlespace InfoSphere
(circa 1999)

Input Planning/
Execution
Products

Command
Guidance

User
Information

Products &
DBs

Fusion
Products

Combat
Support
Products

Manipulate
to Create

Knowledge Query

Publish

Subscribe

Transform Control

Common

Representation

Interact

Task
Centric

Presentations
Collaborative

Problem
Solving

Automatic
Formatting &

Filtering

Automatic
Data

Capture

http://www.sab.hq.af.mil/Archives/index.htm

JBI Basics

n Information exchange
n Publish/Subscribe/Query

n Transforming data
to knowledge
n Fuselets

The JBI is a system of systems that integrates, aggregates,
& distributes information to users at all echelons, from
the command center to the battlefield.

The JBI is built on four key technologies:

n Distributed collaboration
n Shared, updateable

knowledge objects

n Force/Unit interfaces
n Templates

» Operational capability
» Information inputs
» Information

requirements

Architectural Concept
SENSORS

Coalition partners

ABCS

TBMCS

GCCS-M

AFATDS

GCSS

SYSTEMS

Subscrib
e

Publish

Global Grid, Web,
Internet,….

JBI Repository

O B J - I D : T B M C S - 5 9

J B I - C L I E N T F L E X - 1 7 6 5 A

O B J - T Y P E : ATO-MSG

T i m e - s t a m p : 0 6 2 2 2 0 0 1

S E C U R I T Y : U N C L A S

G E O : 1 6 7 / 3 4 / 2 7 W - 4 5 / 2 2 / 5 7 N

< C A M P A I G N - I D D E C I S I V E - H A L T - 2 0 0 1 >

< M S G I D A T O / T A C C >

< A I R T A S K R E C O N N A I S S A N C E >< T A S K U N I T 6 3 - T R S / K X X Q / D E T - 1 - F O L >

< M S N D A T A F 0 0 2 5 / - / P H I C O - 1 0 / 1 R F 4 C / R E C >

< R E C D A T A 8 A A 0 0 1 / P R Y : 2 / 3 0 1 5 0 0 Z / - / S L A R >< T R C P L O T 4 2 0 0 3 5 N 0 1 5 3 5 4 5 E / R A D : 5 0 N M >

< I N G R E S S - R O U T E >

< C O M M A N D - G U I D A N C E >

O B J - I D : T B M C S - 5 9

J B I - C L I E N T F L E X - 1 7 6 5 A

OBJ-TYPE: ATO-MSG

T i m e - s t a m p : 0 6 2 2 2 0 0 1

SECURITY: UNCLAS

G E O : 1 6 7 / 3 4 / 2 7 W - 4 5 / 2 2 / 5 7 N

< C A M P A I G N - I D D E C I S I V E - H A L T - 2 0 0 1 >

< M S G I D A T O / T A C C >

< A I R T A S K R E C O N N A I S S A N C E >< T A S K U N I T 6 3 - T R S / K X X Q / D E T - 1 - F O L >

< M S N D A T A F 0 0 2 5 / - / P H I C O - 1 0 / 1 R F 4 C / R E C >

< R E C D A T A 8 A A 0 0 1 / P R Y : 2 / 3 0 1 5 0 0 Z / - / S L A R >< T R C P L O T 4 2 0 0 3 5 N 0 1 5 3 5 4 5 E / R A D : 5 0 N M >

< I N G R E S S - R O U T E >

< C O M M A N D - G U I D A N C E >

O B J - I D : T B M C S - 5 9

J B I - C L I E N T F L E X - 1 7 6 5 A

OBJ-TYPE: ATO-MSG

T i m e - s t a m p : 0 6 2 2 2 0 0 1

SECURITY: UNCLAS

G E O : 1 6 7 / 3 4 / 2 7 W - 4 5 / 2 2 / 5 7 N

< C A M P A I G N - I D D E C I S I V E - H A L T - 2 0 0 1 >

< M S G I D A T O / T A C C >

< A I R T A S K R E C O N N A I S S A N C E >< T A S K U N I T 6 3 - T R S / K X X Q / D E T - 1 - F O L >

< M S N D A T A F 0 0 2 5 / - / P H I C O - 1 0 / 1 R F 4 C / R E C >

< R E C D A T A 8 A A 0 0 1 / P R Y : 2 / 3 0 1 5 0 0 Z / - / S L A R >< T R C P L O T 4 2 0 0 3 5 N 0 1 5 3 5 4 5 E / R A D : 5 0 N M >

< I N G R E S S - R O U T E >

< C O M M A N D - G U I D A N C E >

JBI Platform

JBI Subscription
Broker

Meta
data

Meta
data

Meta
data

JBI Query
Broker

?
?

?

JBI
Management

Services

ACCESS

Personnel

BDA

Orders of
Battle

Weather

Targets

Etc....

B
A
T
T
L
E
S
P
A
C
E

I
N
F
O

Intentions

Co
nn
ec
t
or
s

Query

A fusion of BIG systems

COI Applications,
Systems, Sensors

MIORepositoryQuery
Service

pub/sub
Service

Commander &
Information

Management
Staff

COI Infosphere

Meta
data Role Based

Access Control
O B J - I D : T B M C S - 5 9

J B I - C L I E N T F L E X - 1 7 6 5 AO B J - T Y P E : A T O - M S G

Time-stamp: 06222001

SECURITY: UNCLASG E O : 1 6 7 / 3 4 / 2 7 W - 4 5 / 2 2 / 5 7 N

< C A M P A I G N - I D D E C I S I V E - H A L T - 2 0 0 1 >

<MSGID ATO/TACC>< A I R T A S K R E C O N N A I S S A N C E >< T A S K U N I T 6 3 - T R S / K X X Q / D E T - 1 - F O L >

< M S N D A T A F 0 0 2 5 / - / P H I C O - 1 0 / 1 R F 4 C / R E C >< R E C D A T A 8 A A 0 0 1 / P R Y : 2 / 3 0 1 5 0 0 Z / - / S L A R >

< T R C P L O T 4 2 0 0 3 5 N 0 1 5 3 5 4 5 E / R A D : 5 0 N M >< I N G R E S S - R O U T E >

< C O M M A N D - G U I D A N C E >

MIO
O B J - I D : T B M C S - 5 9

J B I - C L I E N T F L E X - 1 7 6 5 AO B J - T Y P E : ATO-MSG

T i m e - s t a m p : 0 6 2 2 2 0 0 1

SECURITY: UNCLASG E O : 1 6 7 / 3 4 / 2 7 W - 4 5 / 2 2 / 5 7 N

< C A M P A I G N - I D D E C I S I V E - H A L T - 2 0 0 1 >

< M S G I D A T O / T A C C >< A I R T A S K R E C O N N A I S S A N C E >< T A S K U N I T 6 3 - T R S / K X X Q / D E T - 1 - F O L >

< M S N D A T A F 0 0 2 5 / - / P H I C O - 1 0 / 1 R F 4 C / R E C >< R E C D A T A 8 A A 0 0 1 / P R Y : 2 / 3 0 1 5 0 0 Z / - / S L A R >

< T R C P L O T 4 2 0 0 3 5 N 0 1 5 3 5 4 5 E / R A D : 5 0 N M >< I N G R E S S - R O U T E >

< C O M M A N D - G U I D A N C E >

O B J - I D : T B M C S - 5 9

J B I - C L I E N T F L E X - 1 7 6 5 AO B J - T Y P E : ATO-MSG

T i m e - s t a m p : 0 6 2 2 2 0 0 1

SECURITY: UNCLASG E O : 1 6 7 / 3 4 / 2 7 W - 4 5 / 2 2 / 5 7 N

< C A M P A I G N - I D D E C I S I V E - H A L T - 2 0 0 1 >

< M S G I D A T O / T A C C >< A I R T A S K R E C O N N A I S S A N C E >< T A S K U N I T 6 3 - T R S / K X X Q / D E T - 1 - F O L >

< M S N D A T A F 0 0 2 5 / - / P H I C O - 1 0 / 1 R F 4 C / R E C >< R E C D A T A 8 A A 0 0 1 / P R Y : 2 / 3 0 1 5 0 0 Z / - / S L A R >

< T R C P L O T 4 2 0 0 3 5 N 0 1 5 3 5 4 5 E / R A D : 5 0 N M >< I N G R E S S - R O U T E >

< C O M M A N D - G U I D A N C E >Meta
data

Meta
data

MIO
MIO

Publish
Subscribe

Fuselet

Query
Publish/

Subscribe/
Query Force Template

Common Client Services API (CAPI)

Managed
Info Obj

(MIO)

PredatorPredatorPredator

MDRRepository

O B J - I D : T B M C S - 5 9

J B I - C L I E N T F L E X - 1 7 6 5 AO B J - T Y P E : ATO-MSG

T i m e - s t a m p : 0 6 2 2 2 0 0 1

SECURITY: UNCLASG E O : 1 6 7 / 3 4 / 2 7 W - 4 5 / 2 2 / 5 7 N

< C A M P A I G N - I D D E C I S I V E - H A L T - 2 0 0 1 >

< M S G I D A T O / T A C C >< A I R T A S K R E C O N N A I S S A N C E >< T A S K U N I T 6 3 - T R S / K X X Q / D E T - 1 - F O L >

< M S N D A T A F 0 0 2 5 / - / P H I C O - 1 0 / 1 R F 4 C / R E C >< R E C D A T A 8 A A 0 0 1 / P R Y : 2 / 3 0 1 5 0 0 Z / - / S L A R >

< T R C P L O T 4 2 0 0 3 5 N 0 1 5 3 5 4 5 E / R A D : 5 0 N M >< I N G R E S S - R O U T E >

< C O M M A N D - G U I D A N C E >

O B J - I D : T B M C S - 5 9

J B I - C L I E N T F L E X - 1 7 6 5 AO B J - T Y P E : ATO-MSG

T i m e - s t a m p : 0 6 2 2 2 0 0 1

SECURITY: UNCLASG E O : 1 6 7 / 3 4 / 2 7 W - 4 5 / 2 2 / 5 7 N

< C A M P A I G N - I D D E C I S I V E - H A L T - 2 0 0 1 >

< M S G I D A T O / T A C C >< A I R T A S K R E C O N N A I S S A N C E >< T A S K U N I T 6 3 - T R S / K X X Q / D E T - 1 - F O L >

< M S N D A T A F 0 0 2 5 / - / P H I C O - 1 0 / 1 R F 4 C / R E C >< R E C D A T A 8 A A 0 0 1 / P R Y : 2 / 3 0 1 5 0 0 Z / - / S L A R >

< T R C P L O T 4 2 0 0 3 5 N 0 1 5 3 5 4 5 E / R A D : 5 0 N M >< I N G R E S S - R O U T E >

< C O M M A N D - G U I D A N C E >

O B J - I D : T B M C S - 5 9

J B I - C L I E N T F L E X - 1 7 6 5 AO B J - T Y P E : ATO-MSG

T i m e - s t a m p : 0 6 2 2 2 0 0 1

SECURITY: UNCLASG E O : 1 6 7 / 3 4 / 2 7 W - 4 5 / 2 2 / 5 7 N

< C A M P A I G N - I D D E C I S I V E - H A L T - 2 0 0 1 >

< M S G I D A T O / T A C C >< A I R T A S K R E C O N N A I S S A N C E >< T A S K U N I T 6 3 - T R S / K X X Q / D E T - 1 - F O L >

< M S N D A T A F 0 0 2 5 / - / P H I C O - 1 0 / 1 R F 4 C / R E C >< R E C D A T A 8 A A 0 0 1 / P R Y : 2 / 3 0 1 5 0 0 Z / - / S L A R >

< T R C P L O T 4 2 0 0 3 5 N 0 1 5 3 5 4 5 E / R A D : 5 0 N M >< I N G R E S S - R O U T E >

< C O M M A N D - G U I D A N C E >

POLICY

GIG -BE, SIPRNET, Internet,….

NCES Storage
Svc

NCES Discovery
Svc

NCES Security
Svc

Observations?

n Everyone is starting to think big, not
just the US Air Force

n Big systems are staggeringly complex
n They won’t be easy to build
n And will be even harder to operate and

repair when problems occur
n Yet the payoff is huge and we often

have no choice except to push forward!

Systems of Systems (SoS) and Service
Oriented Architectures (SOAs)

n The trends (towards huge systems) run
against trustworthiness goals
n IDL and WSDL specifications rarely include

information about expected performance,
security or reliability properties

n And if they did… the platforms lack ways to
enforce guarantees

5

Implications of bigness?

n We’ll need to ensure that if our big
components crash, their restart is “clean”
n Leads to what is called the transactional model

n But transactions can’t guarantee high availability

n We’ll also “wrap” components with new
services that
n Exploit clustered scalability, high availability, etc

n May act as message queuing intermediaries
n Often cache data from the big components

Trusting multi-component systems

n Let’s tackle a representative question
n We want our systems to be trustworthy

even when things malfunction
n This could be benign or malignant

n What does it mean to “tolerate” a
failure, while giving sensible, consistent
behavior?

CS514 threat model

n For CS514 we need to make some
assumptions that will carry us through
the whole course
n What’s a “process”? A “message”?
n How does a network behave?
n How do processes and networks fail?
n How do attackers and intruders behave?

Our model

n Non-deterministic processes, interacting by
message passing
n The non-determinism comes from use of threads

packages, reading the clock, “event” delivery to
the app, connections to multiple I/O channels

n Messages can be large and we won’t worry about
how the data is encoded

n 1-1 and 1-many (multicast) comm. patterns

n The non-determinism assumption makes a
very big difference. Must keep it in mind.

Network model

n We’ll assume your vanilla, nasty, IP network:
n A machine can have multiple names or IP

addresses and not every machine can connect to
every other machine

n Network packets can be lost, duplicated, delivered
very late or out of order, spied upon, replayed,
corrupted, source or destination address can lie

n We can use UDP, TCP or UDP-multicast in the
application layer

Execution model: asynchronous

n Historically, researchers distinguished
asynchronous and synchronous models
n Synchronous distributed systems: global

clock; execution in lock-step with time to
exchange messages during each step.
Failures detectable

n Asynchronous distributed systems: no
synchronized clocks or time-bounds on
message delays. Failures undetectable

6

Synchronous and
Asynchronous Executions

p q r p q r

…processes share a
synchronized clock

In the synchronous
model messages
arrive on time

… and failures are
easily detected

None of these
properties holds in an
asynchronous model

Reality: neither one

n Real distributed systems aren’t synchronous
n Although a flight control computer can come close

n Nor are they asynchronous
n Software often treats them as asynchronous
n In reality, clocks work well… so in practice we often use

time cautiously and can even put limits on message delays
n For our purposes we usually start with an

asynchronous model
n Subsequently enrich it with sources of time when useful.
n We sometimes assume a “public key” system. This lets us

sign or encrypt data where need arises

Failure model

n How do real systems fail?
n Bugs in applications are a big source of crashes.

Often associated with non-determinism, which
makes debugging hard

n Software or hardware failures that crash the whole
computer are also common

n Network outages cause spikes of high packet loss
or complete disconnection

n Overload is a surprisingly important risk, too

Detecting failures

n This can be hard!
n An unresponsive machine might be working but

temporarily “partitioned” away
n A faulty program may continue to respond to

some kinds of requests (it just gives incorrect
responses)

n Timeouts can be triggered by overloads
n One core problem can cascade to trigger many

others
n We usually know when things are working

but rarely know what went wrong

Thought problem

n Jill and Sam will meet for lunch. They’ll eat in
the cafeteria unless both are sure that the
weather is good
n Jill’s cubicle is inside, so Sam will send email
n Both have lots of meetings, and might not read

email. So she’ll acknowledge his message.
n They’ll meet inside if one or the other is away

from their desk and misses the email.

n Sam sees sun. Sends email. Jill acks’s. Can
they meet outside?

Sam and Jill
Sam Jill

Jill, the weather is beautiful!
Let’s meet at the sandwich
stand outside.

I can hardly wait. I haven’t
seen the sun in weeks!

7

They eat inside! Sam reasons:

n “Jill sent an acknowledgement but
doesn’t know if I read it

n “If I didn’t get her acknowledgement I’ll
assume she didn’t get my email

n “In that case I’ll go to the cafeteria
n “She’s uncertain, so she’ll meet me

there

Sam had better send an Ack
Sam Jill

Jill, the weather is beautiful!
Let’s meet at the sandwich
stand outside.

I can hardly wait. I haven’t
seen the sun in weeks!

Great! See yah…

Why didn’t this help?

n Jill got the ack… but she realizes that
Sam won’t be sure she got it

n Being unsure, he’s in the same state as
before

n So he’ll go to the cafeteria, being dull
and logical. And so she meets him
there.

New and improved protocol

n Jill sends an ack. Sam acks the ack. Jill
acks the ack of the ack….

n Suppose that noon arrives and Jill has
sent her 117’th ack.
n Should she assume that lunch is outside in

the sun, or inside in the cafeteria?

How Sam and Jill’s romance
ended

Jill, the weather is beautiful!
Let’s meet at the sandwich
stand outside.

I can hardly wait. I haven’t seen the
sun in weeks!

Great! See yah…

Got that…

Maybe tomorrow?

Yup…

Oops, too late for lunch

. . .

Things we just can’t do

n We can’t detect failures in a trustworthy,
consistent manner

n We can’t reach a state of “common
knowledge” concerning something not agreed
upon in the first place

n We can’t guarantee agreement on things
(election of a leader, update to a replicated
variable) in a way certain to tolerate failures

8

Consistency

n At the core of the notion of trust is a funda-
mental concept: “distributed consistency”
n Our SoS has multiple components

n Yet they behave as a single system: many
components mimic a single one

n Examples:
n Replicating data in a primary -backup server

n Collection of clients agreeing on which to use
n Jill and Sam agreeing on where to meet for lunch

Does this matter in big systems?

n Where were Jill and Sam in the JBI?
n Well, JBI is supposed to coordinate military

tacticians and fighters…
n Jill and Sam are trying to coordinate too.
n If they can’t solve a problem, how can the JBI?
n Illustrates value of looking at questions in

abstracted form!

n Generalize: our big system can only solve
“solvable” consistency problems!

Why is this important?

n Trustworthy systems, at their core,
behave in a “consistent” way even
when disrupted by failures, other stress

n Hence to achieve our goals we need to
ask what the best we can do might be
n If we set an impossible goal, we’ll fail!
n But if we ignore consistency, we’ll also fail!

A bad news story?

n Jill and Sam set out to solve an impossible
problem
n So for this story, yes, bad news

n Fortunately, there are practical options
n If we pose goals carefully, stay out of trouble
n Then solve problems and prove solutions correct!

n And insights from “small worlds” can often be
applied to very big systems of systems

Trust and Consistency

n To be trustworthy, a system must provide
guarantees and enforce rules

n When this entails actions at multiple places
(or, equivalently, updating replicated data)
we require consistency

n If a mechanism ensures that an observer
can’t distinguish the distributed system from
a non-distributed one, we’ll say it behaves
consistently

Looking ahead

n We’ll start from the ground and work our way
up, building a notion of consistency
n First, consistency about temporal words like “A

happened before B”, or “When A happened,
process P believed that Q…”

n Then we’ll look at a simple application of this to
checkpoint/rollback

n And then we’ll work up to a full-fledged
mechanism for replicating data and coordinating
actions in a big system

9

Homework (don’t hand it in)

n We’ve skipped Parts I and II of the book
n I’m assuming that most of you know how TCP

works, etc, and how Web Services behave
n There’s good material on performance… please

review it, although we won’t have time to cover it.

n Think about TCP failure detection and the
notion of distributed consistency
n Thought puzzle: If we were to specify the

behavior of TCP and the behavior of UDP, can TCP
really be said to be “more reliable” than UDP?

