
1

CS514: Intermediate Course
in Operating Systems

Professor Ken Birman
Vivek Vishnumurthy: TA

Programming Web Services

n We’ve been somewhat client centric
n Looked at how a client binds to and invokes a

Web Service

n Discussed the underlying RPC protocols
n Explored issues associated with discovery

n But we’ve only touched upon the data center
side

n Today discuss the options and identify some
tough technical challenges

(Sidebar)

n Not all Web Services will be data
centers
n Intel is using Web Services to access

hardware instrumentation
n Many kinds of sensors and actuators will

use Web Services interfaces too
n Even device drivers and other OS internals

are heading this way!

n But data centers will be a BIG deal…

Web
ServiceWeb
ServiceWeb
Services

Reminder: Client to eStuff.com

n We think of remote method invocation
and Web Services as a simple chain

n This oversimplifies challenge of “naming
and discovery”

Client
system

Soap RPC

SOAP
router

A glimpse inside eStuff.com

Pub-sub combined with point -to-point
communication technologies like TCP

LB

service

LB

service

LB

service

LB

service

LB

service

LB

service

“front-end applications”

What other issues arise?

n How does one build scalable, cluster-style
services to run inside a cluster
n The identical issues arise with CORBA

n What tools currently exist within Web
Services?

n Today: explore process of slowing scaling up
a service to handle heavier and heavier loads
n Start by exploring single-server issues
n Then move to clustering, and role of the publish-

subscribe paradigm
n We’ll touch on some related reliability issues

2

Building a Web Service: Step 1

n Most applications start as a single
program that uses CORBA or Web
Services
n Like the temperature service
n Exports its interfaces (WSDL, UDDI)
n Clients discover service, important

interfaces and can do invocations

Suppose that demand grows?

n Step 2 is to just build a faster server
n Port code to run on a high-end machine
n Use multi-threading to increase internal

capacity

n What are threads?
n Concept most people were exposed to in

CS414, but we’ll review very briefly

Threads

n We think of a program as having a sort
of virtual CPU dedicated to it
n So your program has a “PC” telling what

instruction to execute next, a stack, its
own registers, etc

n Idea of threads is to have multiple
virtual CPUs dedicated to a single
program, sharing memory

Threads

n Each thread has:
n Its own stack (bounded maximum size)

n A function that was called when it started (like
“main” in the old single-threaded style)

n Its own registers and PC

n Threads share global variables and memory
n The system provides synchronization

mechanisms, like locks, so that threads can
avoid stepping on one-another

Challenges of using threads

n Two major ways to exploit threads in
Web Services and similar servers

1. Each incoming request can result in
the launch of a new thread

2. Incoming requests can go into
“request queues”. Small pools of
threads handle each pool

n We refer to these as “event” systems

Example Event System

(Not limited to data centers… also common in
telecommunications, where it’s called “workflow

programming”)

3

Problems with threads

n Event systems may process LOTS of events
n But existing operating systems handle large

numbers of threads poorly
n A major issue is the virtual memory consumption

of all those stacks
n With many threads, a server will start to thrash

even if the “actual workload” is relatively light
n If threads can block (due to locks) this is

especially serious

n See: Using Threads in Interactive Systems: A
Case Study (Hauser et al; SOSP 1993)

Sometimes we can do better

n SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services
(Welsh, 2001)
n Analyzes threads vs event-based systems,

finds problems with both
n Suggests trade-off: stage-driven

architecture
n Evaluated for two applications

n Easy to program and performs well

SEDA Stage Threaded Server Throughput

Source: SEDA: An Architecture for Well-Conditioned, Scalable Internet Services (Welsh, SOSP 2001)

Event-driven Server
Throughput What if load is still too high?

n The trend towards clustered
architectures arises because no single-
machine solution is really adequate

n Better scheme is to partition the work
between a set of inexpensive computers
n Called a “blade” architecture
n Ideally we simply subdivide the “database”

into disjoint portions

4

x y z

A RAPS of RACS (Jim Gray)

n RAPS: A reliable array of partitioned
services

n RACS: A reliable array of cluster-
structured server processes

Ken Birman searching
for “digital camera”

Pmap “B-C”: {x, y, z} (equivalent replicas)

Here, y gets picked, perhaps based on load

A set of RACS

RAPS

RACS: Two perspectives

n A load-balancer
(might be hardware)
in front of a set of
replicas, but with
“affinity” mechanism

n A partitioning
function (probably
software), then
random choice
within replicas

LB

service x y z

client client

pmap does “partition mapping”

Affinity

n Problem is that many clients will talk to
a service over a period of time
n Think: Amazon.com, series of clicks to pick

the digital camera you prefer
n This builds a “history” associated with

recent interactions, and cached data
n We say that any server with the history

has an affinity for subsequent requests

Affinity issues favor pmap

n Hardware load balancers are very fast
n But can be hard to customize
n Affinity will often be “keyed” by some form

of content in request
n HLB would need to hunt inside the request,

find the content, then do mapping
n Easy to implement in software… and

machines are getting very fast…

Our platform in a datacenter

Query source Update source

Services are hosted at data centers but accessible system -wide

pmap

pmap

pmap

Server pool

l2P
map

Logical partitioning of services

Logical services map to a physical
resource pool, perhaps many to one

Data center A Data center B

Operators have
some control but
many adaptations
are automated

Problems we’ll now face

n The single client wants to talk to the
“correct” server, but discovers the
service by a single name.
n How can we implement pmap?

n We need to replicate data within a
partition
n How should we solve this problem?

n Web Services don’t tackle this

5

More problems

n Our system is complex
n How to administer?
n How should the system sense load changes
n Can we vary the sizes of partitions?
n How much can be automated?
n To what degree can we standardize the

architecture?
n What if something fails?

Event “notification” in WS

n Both CORBA and Web Services tackle just a
small subset of these issues

n They do so through a
n Notification (publish-subscribe) option
n Notification comes in two flavors; we’ll focus on

just one of them (WS_NOTIFICATION)
n Can be combined with “reliable” event queuing

n Very visible to you as the developer:
n Notification and reliable queuing require “optional”

software (must buy it) and work by the developer.
n Not trivial to combine the two mechanisms

Publish-subscribe basics

n Dates to late 1980’s, work at Stanford,
Cornell, then commercialized by TIBCO
and ISIS

n Support an interface like this:
n Publish(“topic”, “message”)
n Subscribe(“topic”, handler)

n On match, platform calls handler(msg)

Publish-subscribe basics

Message “bus”

client

Publish(“red ”, “caution, accident ahead”)

Subscribe(“red”, GotRedMsg); Subscribe(“red”, GotRedMsg);
Subscribe(“blue ”, GotBlueMsg

GotRedMsg(“Caution…”); GotRedMsg(“Caution…”);

Bus does a multicast

WS_NOTIFICATION

n In Web Services, this is one of two
standards for describing a message bus
n The other is a combination of

WS_EVENTING and WS_NAMING but
seems to be getting less “traction”

n Also includes “content filtering” after
receipt of message

n No reliability guarantees

Content filtering

n Basic idea is simple
n First deliver the message based on topic
n But then apply an XML query to the

message
n Discard any message that doesn’t match

n Application sees only messages that
match both topic and query

n But costs of doing the query can be big

6

What about reliability?

n Publish-subscribe technologies are
usually reliable, but the details vary
n For example, TIB message bus will retry

for 90 seconds, then discard a message if
some receiver isn’t acknowledging receipt

n And some approaches assume that the
receiver, not the sender, is responsible for
reliability

n In big data centers, a source of trouble

Broadcast Storms

n A phenomenon of high loss rates seen when
message bus is under heavy load
n Requires very fast network hardware and multiple

senders
n With multicast, can get many back-to-back

incoming messages at some receivers
n These get overwhelmed and drop messages, must

solicit retransmission
n The retransmissions now swamp the bus

n Storms can cause network “blackouts” for
extended periods (minutes)!

What about WS_RELIABILITY?

n Many people naïvely assume that this
standard will eliminate problems of the
sort just described

n Not so!
n WS_RELIABILITY “looks” like it matches

the issue
n But in fact is concerned with a different

problem….

Recall our naïve WS picture

n What happens if the Web Service isn’t
continuously available?
n Router could reject request
n But some argue for “message queuing”

Web
ServiceWeb
ServiceWeb
Services

Client
system

Soap RPC

SOAP
router

Message queuing middleware

n A major product category
n IBM MQSeries, HP MessageQueue, etc

n Dates back to early client-server period when
talking to mainframes was a challenge

n Idea: Client does an RPC to “queue” request in a
server, which then hands a batch of work to the
mainframe, collects replies and queues them

n Client later picks up reply

WS_RELIABILITY

n This standard is “about” message
queuing middleware
n It allows the client to specify behavior in

the event that something fails and later
restarts
n At most once: easiest to implement

n At least once: requires disk logging
n Exactly once: requires complex protocol and

special server features. Not always available

7

Can a message bus be reliable?

n Publish-subscribe systems don’t
normally support this reliability model

n Putting a message queue “in front” of a
message bus won’t help
n Unclear who, if anyone, is “supposed” to

receive a message when using pub-sub
n The bus bases reliability on current

subscribers, not “desired behavior”

Back to our data center

Query source Update source

Services are hosted at data centers but accessible system -wide

pmap

pmap

pmap

Server pool

l2P
map

Data center A Data center B

Back to our data center

n We’re finding many gaps between what
Web Services offer and what we need!

n Good news?
n Many of the mechanisms do exist

n Bad news?
n They don’t seem to fit together to solve

our problem!
n Developers would need to hack around this

Where do we go from here?

n We need to dive down to basics
n Understand:

n What does it take to build a trustworthy
distributed computing system?

n How do the technologies really work?
n Can we retrofit solutions into Web Services?

n Our goal? A “scalable, trustworthy, services
development framework”.

