CS486 Problem Set 2

- 1. Solve the exercise on p. 24, items 1, 4, 5, and 8.
 - (1)

$$\begin{array}{cccccc} (1) & {\sf F} & q \supset (p \supset q) \\ (2) & {\sf T} & q & (1) \\ (3) & {\sf F} & p \supset q & (1) \\ (4) & {\sf T} & p & (3) \\ (5) & {\sf F} & q & (3) \\ & & {\sf X}(2) \end{array}$$

(4)

(1)	F	$[((p \supset r) \land (q \supset r)) \land (p \lor q)] \supset r$							
(2)	Т	$((p \supset r) \land (q \supset r)) \land (p \lor q)$							(1)
(3)	F	r							(1)
(4)	Т	$(p \supset r) \land (q \supset r)$							(2)
(5)	F	$p \lor q$							(2)
(6)	Т	$p \supset r$							(4)
(7)	Т	$q \supset r$							(4)
(8	5) T	p	(5)	(9) T	q				(5)
	(10)	F p (6) (11) $T r$	(6)	(12)	$F_{-}q$	(7)	(13)	T r	(7)
		$X(8) \qquad \qquad X(3)$			X(9)			X(3)	

(5)

(1)	F	_	$(p \wedge$	$q)\supset(\neg$	$\neg p \lor \neg q$			
(2)	Т			$\neg (p \land e)$	q)			(1)
(3)	F			$\neg p \lor \neg$	q			(1)
(4)	F			$p \wedge q$				(2)
(5)	F			$\neg p$				(3)
(6)	F			$\neg q$				(3)
(7)	F	p	(4)	(8)	F	q	(4)
(9)	Т	p	(5)	(10)	Т	q	(6)
		X('	7)			X(8	3)	

(8)

2. Recall that a tableaux \mathcal{T} is complete if all its branches are either closed or complete, where a branch θ of a tableaux \mathcal{T} is complete if for every α on θ both α_1 and α_2 occur on θ and if for every β on θ at least one off β_1 , β_2 occur on θ .

We prove that the tableaux method terminates.

We generate an analytic tableaux for the unsigned formula X in the following manner. At each stage, we have an ordered dyadic tree \mathcal{T}_i , In the first stage, we construct the tree \mathcal{T}_1 , a one-point tree whose origin is F X. In the n^{th} stage, we select from \mathcal{T}_{n-1} the left-most branch θ that is unclosed and incomplete. From this branch, we consider all α on θ such that either α_1 or α_2 does not occur on θ and all β on θ such that neither β_1 nor β_2 occur on θ . We select the α or β node that dominates all others. If we select an α node such that α_1 does not occur on θ , then extend θ by α_1 to form \mathcal{T}_n . If we select an α node such that α_2 does not occur on θ , then extend θ by α_2 to form \mathcal{T}_n . If we select β node, then extend θ by β_1 , β_2 to form \mathcal{T}_n .

We show that the above method either closes or completes any branch θ by induction on the "size" of the branch. Define $size(\theta)$ as follows:

$$size(\theta) = \begin{cases} 0 & \text{if } \theta \text{ closed or completed} \\ \sum_{x \text{ dominates } y} deg(x) & \text{where } x \text{ is the node selected} \end{cases}$$

Note that an incomplete branch necessarily has an α or β node selected by the above procedure; furthermore, the degree of an α or β node is greater than zero. Hence $size(\theta) > 0$ for any unclosed, incomplete branch.

Suppose $size(\theta) = 0$. Then θ is closed or complete.

Suppose $size(\theta) > 0$. Suppose an α node is selected. In either one or two steps, we must close or complete $\theta : \alpha_1 : \alpha_2$. Note $size(\theta : \alpha_1 : \alpha_2) < size(\theta)$ because $deg(\alpha_1) + deg(\alpha_2) < deg(\alpha)$. Hence, by the induction hypothesis, the method closes or completes the branch. Suppose a β node is selected. Then we must close or complete $\theta : \beta_1$ and $\theta : \beta_2$. Note $size(\theta : \beta_1) < size(\theta)$ because $deg(\beta_1) < deg(\beta)$; likewise, $size(\theta : \beta_2) < size(\theta)$ because $deg(\beta_2) < deg(\beta)$. Hence, by the induction hypothesis, the method closes or completes both branches.

Hence, the method closes or completes any branch. In particular, the method closes or completes the one-point tree whose origin is F X. Thus, the tableaux method terminates.

3. We prove that any downward closed set S satisfying for all signed formulas $X, X \in S$ iff $\overline{X} \notin S$ is a truth set.

Let S be a downward closed set satisfying for all signed formulas $X, X \in S$ iff $\overline{X} \notin S$. We show that S satisfies the laws of a truth set:

(0) Show that for any X, exactly on of X, \overline{X} belongs to S.

Let X be a signed formula. If $X \in S$, then $\overline{X} \notin S$, by the definition of S. If $X \notin S$, then $\overline{X} \in S$, by the definition of S. Hence, exactly one of X, \overline{X} belongs to S.

(a) Show $\alpha \in S$ iff $\alpha_1 \in S$ and $\alpha_2 \in S$.

Consider α . If $\alpha \in S$, then $\alpha_1 \in S$ and $\alpha_2 \in S$, by the definition of downward closed. Suppose $\alpha_1 \in S$ and $\alpha_2 \in S$. By way of contradiction, assume $\alpha \notin S$. By the definition of $S, \overline{\alpha} \in S$. By $(J_1(a)), \overline{\alpha}$ is some β . Hence $\beta_1 \in S$ or $\beta_2 \in S$, by the definition of downward closed. Furthermore, by $(J_2(b)), \overline{\alpha_1}$ is β_1 and $\overline{\alpha_2}$ is β_2 . Thus, $\overline{\alpha_1} \in S$ or $\overline{\alpha_2} \in S$. If $\overline{\alpha_1} \in S$, then $\alpha_1 \notin S$, by definition of S, but contrary to the assumption. If $\overline{\alpha_2} \in S$, then $\alpha_2 \notin S$, by the definition of S, but contrary to the assumption. If $\overline{\alpha_2} \in S$, then $\alpha_2 \notin S$, by the definition of S, but contrary to the assumption. If $\overline{\alpha_2} \in S$, then $\alpha_2 \notin S$, by the definition of S, but contrary to the assumption.

(b) Show $\beta \in S$ iff $\beta_1 \in S$ or $\beta_2 \in S$.

Consider β . If $\beta \in S$, then $\beta_1 \in S$ or $\beta_2 \in S$, by the definition of downward closed. Suppose $\beta_1 \in S$ or $\beta_2 \in S$. By way of contradiction, assume $\beta \notin S$. By the definition of $S, \overline{\beta} \in S$. By $(J_1(b)), \overline{\beta}$ is some α . Hence $\alpha_1 \in S$ and $\alpha_2 \in S$, by the definition of downward closed. Furthermore, by $(J_2(a)), \overline{\beta_1}$ is α_1 and $\overline{\beta_2}$ is α_2 . Thus, $\overline{\beta_1} \in S$ and $\overline{\beta_2} \in S$. Hence $\beta_1 \notin S$ and $\beta_2 \notin S$, by the definition of S, but contrary to the assumption. Hence, $\beta \in S$.

4. We give a recursive datatype definition for an analytic tableau.

```
Form = var: Var +
    neg: Form +
    and: Form * Form +
    or: Form * Form +
    imp: Form * Form
Sign = t: Unit + f: Unit
Tableaux = index: Nat *
    sign: Sign *
    form: Form *
    next: (closed: Int +
        complete: Unit +
        alpha: Int * Tableaux +
        beta: Int * Tableaux * Tableaux)
```