CS486 Problem Set 2

DUE: 2/11/03

1. Solve the exercise on p. 24 , items $1,4,5$, and 8 .
(1)

(1)	F	$q \supset(p \supset q)$	
(2)	T	q	(1)
(3)	F	$p \supset q$	(1)
(4)	T	p	(3)
(5)	F	q	(3)
		$\mathrm{X}(2)$	

(4)
(1) $\mathrm{F} \quad[((p \supset r) \wedge(q \supset r)) \wedge(p \vee q)] \supset r$
(2) $\mathrm{T} \quad((p \supset r) \wedge(q \supset r)) \wedge(p \vee q)$
(3) F
(4) $\mathrm{T} \quad(p \supset r) \wedge(q \supset r)$
(5) $\mathrm{F} \quad p \vee q$
(6) $\mathrm{T} \quad p \supset r$
(7) T $q \supset r$
(8) $\mathrm{T} p$
(10) $\begin{gathered}\mathrm{F} \\ \mathrm{X}(8)\end{gathered}$
(6)
(11) $\begin{gathered}\mathrm{T} \\ \mathrm{X}(3)\end{gathered}$

(5) $|$| (9) T |
| :--- | :--- |

| (12) | $\begin{array}{lll}\mathrm{F} & q & (7) \\ & \text { (13) } & \mathrm{T} \\ & r \\ & & \\ \mathrm{X}(9) & & \\ \mathrm{X}(3)\end{array}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |

(1)
(1)
(2)
(2)
(4)
(4)
(5)
(7)
(5)

$$
\begin{align*}
& \text { (1) } \mathrm{F} \quad \neg(p \wedge q) \supset(\neg p \vee \neg q) \\
& \text { (2) } \mathrm{T} \quad \neg(p \wedge q) \tag{1}\\
& \text { (3) } \mathrm{F} \quad \neg p \vee \neg q \tag{1}\\
& \text { (4) } \mathrm{F} \quad p \wedge q \tag{2}\\
& \text { (5) } \mathrm{F} \quad \neg p \tag{3}\\
& \text { (6) } \mathrm{F} \quad \neg q \\
& \text { (3) } \\
& \begin{array}{llllllll}
\text { (7) } & \mathrm{F} & p & \text { (4) } & (8) & \mathrm{F} & q & \text { (4) }
\end{array} \tag{4}\\
& \begin{array}{ll|ll}
\mathrm{T}) & \mathrm{T} \\
\mathrm{X}(7) & & \text { (10) } & \mathrm{T} q \\
\mathrm{X}(8)
\end{array}
\end{align*}
$$

(8)
(1) $\mathrm{F} \quad(p \vee(q \wedge r)) \supset((p \vee q) \wedge(p \vee r))$
(2) $\mathrm{T} \quad p \vee(q \wedge r)$
(1)
(3) $\mathrm{F} \quad(p \vee q) \wedge(p \vee r)$
(1)
(4) $\mathrm{T} p$

(2)	(5)	$\mathrm{T} \underset{*}{q \wedge}$

(2)

2. Recall that a tableaux \mathcal{T} is complete if all its branches are either closed or complete, where a branch θ of a tableaux \mathcal{T} is complete if for every α on θ both α_{1} and α_{2} occur on θ and if for every β on θ at least one off β_{1}, β_{2} occur on θ.
We prove that the tableaux method terminates.
We generate an analytic tableaux for the unsigned formula X in the following manner. At each stage, we have an ordered dyadic tree \mathcal{T}_{i}, In the first stage, we construct the tree \mathcal{T}_{1}, a one-point tree whose origin is $\mathrm{F} X$. In the $n^{t h}$ stage, we select from \mathcal{T}_{n-1} the left-most branch θ that is unclosed and incomplete. From this branch, we consider all α on θ such that either α_{1} or α_{2} does not occur on θ and all β on θ such that neither β_{1} nor β_{2} occur on θ. We select the α or β node that dominates all others. If we select an α node such that α_{1} does not occur on θ, then extend θ by α_{1} to form \mathcal{T}_{n}. If we select an α node such that α_{2} does not occur on θ, then extend θ by α_{2} to form \mathcal{T}_{n}. If we select β node, then extend θ by β_{1}, β_{2} to form \mathcal{T}_{n}.
We show that the above method either closes or completes any branch θ by induction on the "size" of the branch. Define $\operatorname{size}(\theta)$ as follows:

$$
\operatorname{size}(\theta)= \begin{cases}0 & \text { if } \theta \text { closed or completed } \\ \sum_{x \text { dominates } y} \operatorname{deg}(x) & \text { where } x \text { is the node selected }\end{cases}
$$

Note that an incomplete branch necessarily has an α or β node selected by the above procedure; furthermore, the degree of an α or β node is greater than zero. Hence $\operatorname{size}(\theta)>0$ for any unclosed, incomplete branch.
Suppose $\operatorname{size}(\theta)=0$. Then θ is closed or complete.
Suppose $\operatorname{size}(\theta)>0$. Suppose an α node is selected. In either one or two steps, we must close or complete $\theta: \alpha_{1}: \alpha_{2}$. Note $\operatorname{size}\left(\theta: \alpha_{1}: \alpha_{2}\right)<\operatorname{size}(\theta)$ because $\operatorname{deg}\left(\alpha_{1}\right)+\operatorname{deg}\left(\alpha_{2}\right)<\operatorname{deg}(\alpha)$. Hence, by the induction hypothesis, the method closes or completes the branch. Suppose a β node is selected. Then we must close or complete $\theta: \beta_{1}$ and $\theta: \beta_{2}$. Note $\operatorname{size}\left(\theta: \beta_{1}\right)<\operatorname{size}(\theta)$ because $\operatorname{deg}\left(\beta_{1}\right)<\operatorname{deg}(\beta)$; likewise, $\operatorname{size}\left(\theta: \beta_{2}\right)<\operatorname{size}(\theta)$ because $\operatorname{deg}\left(\beta_{2}\right)<\operatorname{deg}(\beta)$. Hence, by the induction hypothesis, the method closes or completes both branches.

Hence, the method closes or completes any branch. In particular, the method closes or completes the one-point tree whose origin is $\mathrm{F} X$. Thus, the tableaux method terminates.
3. We prove that any downward closed set S satisfying for all signed formulas $X, X \in S$ iff $\bar{X} \notin S$ is a truth set.
Let S be a downward closed set satisfying for all signed formulas $X, X \in S$ iff $\bar{X} \notin S$. We show that S satisfies the laws of a truth set:
(0) Show that for any X, exactly on of X, \bar{X} belongs to S.

Let X be a signed formula. If $X \in S$, then $\bar{X} \notin S$, by the definition of S. If $X \notin S$, then $\bar{X} \in S$, by the definition of S. Hence, exactly one of X, \bar{X} belongs to S.
(a) Show $\alpha \in S$ iff $\alpha_{1} \in S$ and $\alpha_{2} \in S$.

Consider α. If $\alpha \in S$, then $\alpha_{1} \in S$ and $\alpha_{2} \in S$, by the definition of downward closed. Suppose $\alpha_{1} \in S$ and $\alpha_{2} \in S$. By way of contradiction, assume $\alpha \notin S$. By the definition of $S, \bar{\alpha} \in S$. By $\left(J_{1}(a)\right), \bar{\alpha}$ is some β. Hence $\beta_{1} \in S$ or $\beta_{2} \in S$, by the definition of downward closed. Furthermore, by $\left(J_{2}(b)\right), \overline{\alpha_{1}}$ is β_{1} and $\overline{\alpha_{2}}$ is β_{2}. Thus, $\overline{\alpha_{1}} \in S$ or $\overline{\alpha_{2}} \in S$. If $\overline{\alpha_{1}} \in S$, then $\alpha_{1} \notin S$, by definition of S, but contrary to the assumption. If $\overline{\alpha_{2}} \in S$, then $\alpha_{2} \notin S$, by the definition of S, but contrary to the assumption. Hence $\alpha \in S$.
(b) Show $\beta \in S$ iff $\beta_{1} \in S$ or $\beta_{2} \in S$.

Consider β. If $\beta \in S$, then $\beta_{1} \in S$ or $\beta_{2} \in S$, by the definition of downward closed. Suppose $\beta_{1} \in S$ or $\beta_{2} \in S$. By way of contradiction, assume $\beta \notin S$. By the definition of $S, \bar{\beta} \in S$. By $\left(J_{1}(b)\right), \bar{\beta}$ is some α. Hence $\alpha_{1} \in S$ and $\alpha_{2} \in S$, by the defintion of downward closed. Furthermore, by $\left(J_{2}(a)\right), \overline{\beta_{1}}$ is α_{1} and $\overline{\beta_{2}}$ is α_{2}. Thus, $\overline{\beta_{1}} \in S$ and $\overline{\beta_{2}} \in S$. Hence $\beta_{1} \notin S$ and $\beta_{2} \notin S$, by the defintion of S, but contrary to the assumption. Hence, $\beta \in S$.
4. We give a recursive datatype definition for an analytic tableau.

```
Form = var: Var +
    neg: Form +
    and: Form * Form +
    or: Form * Form +
    imp: Form * Form
Sign = t: Unit + f: Unit
Tableaux = index: Nat *
        sign: Sign *
        form: Form *
        next: (closed: Int +
            complete: Unit +
            alpha: Int * Tableaux +
            beta: Int * Tableaux * Tableaux)
```

