Problem Set 11

Due Date: Thurs, May 1, 2003

Problems

- 1. Show that all functions that are representable in the theory \mathcal{Q} are computable.
- 2. Let $B_1(x)$ and $B_2(x)$ be formulas in the language of \mathcal{Q} with x as sole free variable. Show how to construct formulas G_1 and G_2 such that $\models_Q G_1 \Leftrightarrow B_1(\lceil G_2 \rceil)$ and $\models_Q G_2 \Leftrightarrow B_2(\lceil G_1 \rceil)$.
- 3. Let *Prov* be a provability predicate for the theory \mathcal{Q} and X and Y be formulas in the language of \mathcal{Q} . Assume $\models_{\mathcal{Q}} Prov(\lceil X \rceil) \supset Y$ and $\models_{\mathcal{Q}} Prov(\lceil Y \rceil) \supset X$ Show that both X and Y are theorems in \mathcal{Q} .
- 4. A pair of natural numbers a and a is called a stamps pair if for all $n \ge a+b$ there are natural numbers i and j such that n = i * a + j * b.
 - (a) Prove in λ -PRL that 3 and 5 is a stamps pair.
 - (b) Using λ -PRL notation, describe the algorithm implicitly contained in your proof.
 - (c) Extra credit. What other pairs of natural numbers are stamps pairs?
- 5. Prove in λ -PRL that every non-empty list of integers has a maximal element.

 $\forall \texttt{l:list.} (\sim(\texttt{l=[]}) \supset \exists \texttt{i:int.}(\texttt{i} \in \texttt{l} \land \forall \texttt{j:int.}(\texttt{j} \in \texttt{l} \supset \texttt{j} \leq \texttt{i})))$

Give a λ -PRL definition of the predicate $i \in l$, prove the above statement in λ -PRL's refinement logic, and describe the extracted algorithm in λ -PRL notation.