Problem Set 10

Due Date: Thurs, April 24, 2003

Problems

1. Show how to express the following functions as μ-recursive functions.
(a) The unary constant const ${ }_{k}$ with const $_{k}(x)=k$ for arbitrary $k \in \mathbb{N}$
(b) Exponentiation $\exp (x, y)=x^{y}$
(c) Sum of a list of function values $\operatorname{Sum}_{f}(y)=\sum_{i=0}^{y} f(i)$

To express a function you may only use the functions s, c_{k}, and π_{i}^{n}; the operations \circ (composition), pr (primitive recursion), and μ (minimization), and symbols for auxiliary functions that you prove to be μ-recursive.
2. Show how to represent the following functions in Peano Arithmetic
(a) Division div with $\operatorname{div}(x, y)=x \div y$
(b) The function divides with divides $(x, y)= \begin{cases}1 & \text { if } x \text { divides } y \\ 0 & \text { otherwise }\end{cases}$
(c) The function prime with $\operatorname{prime}(x)= \begin{cases}1 & \text { if } x \text { is a prime number } \\ 0 & \text { otherwise }\end{cases}$
3. Prove $(\forall x)(x+1 \neq x)$ in Peano Arithmetic
4. Show by providing an appropriate model that the following laws are not valid in \mathcal{Q}
(a) $(\forall x, y)(x+y=y+x)$
(b) $(\forall x, y, z)(x+(y+z)=(x+y)+z)$
(c) $(\forall x)(0+x=x)$
(d) $(\forall x, y)(x * y=y * x)$
(e) $(\forall x)(0 * x=0)$
5. Extra credit. The function $A: \mathbb{N}^{2} \rightarrow \mathbb{N}$ is defined recursively as follows

- $A(0,0)=1, A(0,1)=2, A(0, y)=y+2$ otherwise
- $A(n+1,0)=1, A(n+1, y+1)=A(n, A(n+1, y))$

Show that A is μ-recursive and calculate $A(4,4)$.

