Problem Set 10

Due Date: Thurs, April 24, 2003

Problems

- 1. Show how to express the following functions as μ -recursive functions.
 - (a) The unary constant $const_k$ with $const_k(x) = k$ for arbitrary $k \in \mathbb{N}$
 - (b) Exponentiation $exp(x, y) = x^y$
 - (c) Sum of a list of function values $Sum_f(y) = \sum_{i=0}^{y} f(i)$

To express a function you may only use the functions s, c_k , and π_i^n ; the operations \circ (composition), pr (primitive recursion), and μ (minimization), and symbols for auxiliary functions that you prove to be μ -recursive.

- 2. Show how to represent the following functions in Peano Arithmetic
 - (a) Division div with $div(x, y) = x \div y$
 - (b) The function divides with $divides(x, y) = \begin{cases} 1 & \text{if } x \text{ divides } y \\ 0 & \text{otherwise} \end{cases}$ (c) The function prime with $prime(x) = \begin{cases} 1 & \text{if } x \text{ is a prime number} \\ 0 & \text{otherwise} \end{cases}$
- 3. Prove $(\forall x)(x+1 \neq x)$ in Peano Arithmetic
- 4. Show by providing an appropriate model that the following laws are not valid in \mathcal{Q}
 - (a) $(\forall x, y) (x + y = y + x)$ (b) $(\forall x, y, z) (x + (y + z) = (x + y) + z)$ (c) $(\forall x) (0 + x = x)$ (d) $(\forall x, y) (x * y = y * x)$
 - (e) $(\forall x) (0 * x = 0)$
- 5. Extra credit. The function $A: \mathbb{N}^2 \to \mathbb{N}$ is defined recursively as follows
 - A(0,0) = 1, A(0,1) = 2, A(0,y) = y+2 otherwise
 - A(n+1,0) = 1, A(n+1,y+1) = A(n,A(n+1,y))

Show that A is μ -recursive and calculate A(4, 4).