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WHICH DIRECTION TO PICK?

Direction has large covariance



How do we pick the right direction to project to?



MAXIMIZING CORRELATION COEFFICIENT

Say w1 and v1 are the directions we choose to project in views 1
and 2 respectively we want these directions to maximize,
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What is the problem 
with the above?
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BASIC IDEA OF CCA

Normalize variance in chosen direction to be constant (say 1)

Then maximize covariance

This is same as maximizing “correlation coefficient” (recall from
last class).



COVARIANCE VS CORRELATION

Covariance(A,B) = E[(A −E[A]) ⋅ (B −E[B])]
Depends on the scale of A and B. If B is rescaled, covariance shifts.

Corelation(A,B) = E[(A−E[A])⋅(B−E[B])]�
Var(A)�Var(B)

Scale free.
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CANONICAL CORRELATION ANALYSIS

Hence we want to solve for projection vectors w1 and v1 that
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CANONICAL CORRELATION ANALYSIS

Hence we want to solve for projection vectors w1 and v1 that
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CCA ALGORITHM

Write x̃t = � xt
x

′
t
� the d + d ′ dimensional concatenated vectors.

Calculate covariance matrix of the joint data points
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give us projection matrix for view I.
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1,1⌃1,2. The top K eigen vectors of this matrix

give us projection matrix for view II.
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CCA DEMO



i can't believe how awful is this movie i was expecting it to be 
really good especially with the actors that were in the cast this is 
depressing i'm so bummed that they ruined such a good plot 

bummed to see such a bad game what an awful performance 
by everyone on the team as if everyone played to loose need to 
improve hitters more but fielders were also worse today one of 
the worst performance in the history of baseball 

oh man this war movie was just too depressing for me some 
scenes were simply awful even though the plot closely follows 
the novel which i've read i was bummed at the end and had to 
secretly go cry

i will tell you what is wrong with it it is dead that's what is wrong with it i had just 
about enough of this that team is definitely deceased tired and shagged out 
after a long game you say look matey not a single soul in that lineup would to hit 
a single ball even if i put 4000-volts through them they are bleeding demised 
they are not pitching they passed on period plus pretty sure they must smell of 
awful elderberries after that game you should be depressed like me share the 
negativity please



this was so hilarious that's the best movie i've seen in a while i 
didn't know this actor before but he is so funny i was laughing 
from start to finish 

it was hilarious to see playing these kids against experts 
throughout the game they were just running here and there 
and trying to get to the ball which they couldn't even once this 
was funny for viewers but organizers should ensure that 
inexperienced teams don't play against the experienced ones 
to keep the game interesting 

dude that movie was so funny right i was laughing in like fits 
during some of the scenes i know the plot is supposed to be 
thought-provoking but i found it hilarious i really should stop 
laughing all the time but who cares right 

now what seems to be the problem he says after leaning on the 
coach's limb body after a fast pitch struck him during the game 
his face was icy serious not laughing at all unlike everyone else 
jen said 'it is the coach he is not moving at all is he dead he 
said slowly course not we answered laughing again thank god 



well that was a funny movie i enjoyed the plot with all those 
twists you never knew what was going to happen especially in 
this last scene i wasn't expecting this outcome at all haha

was it a game at all i felt as if everyone was just trying to stay warm 
by making as little move as possible laziness of fielders was 
making it appear as if they were running in 0.5x speed mode haha 
strikers made good use of pitch they got and it was an easy win

lol i can't even sit properly now i have a tummy ache because of 
all the rofling that actor's head looked like a volcano haha i swear 
it looked like it was about to erupt and his brains would spill out 
haha

fans at the game are encouraged to get out of their seats stretch 
a bit and sing take me out to the ball game  that is the closest 
baseball gets to a halftime haha 



really love that movie we saw yesterday i was really excited 
since i knew it was going to be released this week and i haven't 
been disappointed at all i especially enjoyed the acting of the 
actors they were so good 

what an awesome game it was dwight evans set the path to 
unprecedented victory when he made his very first strike on the 
pitch he alone made the whole game enjoyable excited for the 
next match 

omg i totally loved yesterday's movie we were all so excited to 
finally catch the third movie after months of scouring the fan 
pages for the plot there are mixed opinions on the acting but i 
think the actors did a brilliant job overall

80 years old and was still playing the game stuff like this 
keeps you excited motivated you know yes he did break his 
back walking to the pitch to take the strike but you know 
everyone has to expire and go to their maker at some point he 
was lucky to do it while doing something he loved i am sure 
he enjoyed every second of it we should learn to enjoy this 
game too like him and reflect that on our strikes 



Kernel PCA
(non-linear projections)
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Works when data lies in a low dimensional linear sub-space
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LINEAR PROJECTIONS (RIGHT CO-ORDINATES)

Demo



A FIRST CUT
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Enumerating products up to order K (ie. products of at most K

coordinates) we can get degree K polynomials.

However dimension blows up as d

K

Is there a way to do this without enumerating �?
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KERNEL TRICK

Essence of Kernel trick:
If we can write down an algorithm only in terms of �(x
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Kernel function measures similarity between points.
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KERNEL PCA

If we want to port PCA to kernel PCA, we need to be able to write
K̃ in terms of kernel functions.
We assumed centered data, so

K̃s,t = ��(xt) − 1
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Knowing kernel function, we can perform Kernel PCA even when
� maps to infinite dimensional space!
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LETS REWRITE PCA

kth column of W is eigenvector of covariance matrix
That is, �kWk = ⌃Wk. Rewriting, for centered X

�kWk = 1
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� n�

t=1
xtx
�
t �Wk = 1

n

n�
t=1
�
x

�
t Wk�xt

Wk’s can be written as linear combination of xt’s, as

Wk = n�
t=1

↵k[t]xt

where ↵k[t] = 1
�kn �x�t Wk�
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where K̃

t

is the t’th column of K̃.
Hence ↵

k

is in the direction of eigen vector of K̃
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LETS REWRITE PCA

Further, since W
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is unit norm,
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LETS REWRITE PCA

However W

k

itself is in feature space and has the same
dimensionality of �(x) (which is possibly infinite)!
However, the projections are in K dimensions and we can hope to
directly compute these as:

y

i

[k] = x

�
i

W

k

= n�
t=1

↵
k

[t]K̃
t,i
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REWRITTING PCA

We assumed centered data, what if its not,
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REWRITING PCA

Equivalently, if Kern is the matrix (Kern
t,s = x

�
t

x

s

),

K̃ = Kern − (1n×n

×Kern)
n

− (Kern × 1

n×n

)
n

+ (1n×n

×Kern × 1

n×n

)
n

2



PCA REWRITTEN

If we only need to compute projections of data points, its enough
to have access to matrix K̃ (a n × n matrix)

Compute top K eigen vectors P1, . . . ,PK

along with eigen values
�1, . . . ,�K

for the matrix K̃

Rescale each P

k

by the inverse of the square-root of corresponding
eigen values ie. ↵

k

= P

k

�√n�
k

Compute projections by setting

y

i

[k] = n�
t=1

↵
k

[t]K̃
t,i

or in other words Y = K̃ × [↵1, . . . ,↵K

]

Compute

˜K = Kern� 1 Kern/n�Kern 1/n+ 1 Kern 1/n2
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KERNEL PCA

All we need to be able to compute, to perform PCA are x

�
t

x

s

Replace x

�
t

x

s

with �(x
t

)��(x
s

) = k(x
t

,x
s

) to perform PCA
in feature space



KERNEL PCA

All we need to be able to compute, to perform PCA are x

�
t

x

s

Replace x

�
t

x

s

with �(x
t

)��(x
s

) = k(x
t

,x
s

) to perform PCA
in feature space



KERNEL PCA

All we need to be able to compute, to perform PCA are x

�
t

x

s

Replace x

�
t

x

s

with �(x
t

)��(x
s

) = k(x
t

,x
s

) to perform PCA
in feature space



KERNEL PCA

If we want to port PCA to kernel PCA, we need to be able to write
K̃ in terms of kernel functions.
We assumed centered data, so

K̃s,t = ��(xt) − 1
n

n�
u=1

�(xu))�
� ��(xs) − 1

n

n�
u=1

�(xu))�
=�(xt)��(xs) − 1

n

n�
u=1

�(xu))��(xs) − 1
n

n�
u=1

�(xu))��(xt)
+ 1

n2

n�
u=1

�(xu))� � n�
v=1

�(xv))�
= k(xt,xs) − 1

n

n�
u=1

k(xu,xs) − 1
n

n�
u=1

k(xu,xt) + 1
n2

n�
u=1

n�
v=1

k(xu,xv))

Knowing kernel function, we can perform Kernel PCA even when
� maps to infinite dimensional space!
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