CS4786/5786: Machine Learning for Data Science, Spring 2015
2/21/2015: Assignment 1: PCA, CCA and Random Projections

Instructions Due at 11:59pm Monday March 7 on CMS. Submit what you have at least once
by an hour before that deadline, even if you haven’t quite added all the finishing touches — CMS
allows resubmissions up to, but not after, the deadline. If there is an emergency such that you need
an extension, contact the professor.

You may work in groups of one up to four. Each group of two or more people must create
a group on CMS well before the deadline (there is both an invitation step and an accept process;
make sure both sides of the handshake occur), and submits 1 submission per group. You may
choose different groups for different assignments. The choice of the number “four” is intended to
reflect the idea of allowing collaboration, but requiring that all group members be able to fit “all
together at the whiteboard”, and thus all be participating equally at all times. (Admittedly, it will
be a tight squeeze around a laptop, but please try.) Please ensure that each member of the group
can individually defend or explain your group’s submission equally well.

You will submit both a writeup and some datafiles you create. The writeup can be handwritten
or typeset, but please make sure it is easily readable either way.

Keep an eye on the course webpage for any announcements or updates.

Academic integrity policy We distinguish between “merely” violating the rules for a given as-
signment and violating academic integrity. To violate the latter is to commit fraud by claiming
credit for someone else’s work. For this assignment, an example of the former would be getting
an answer from person X who is not in your CMS-declared group but stating in your homework
that X was the source of that particular answer. You would cross the line into fraud if you did not
mention X. The worst-case outcome for the former is a grade penalty; the worst-case scenario in
the latter is academic-integrity hearing procedures.

The way to avoid violating academic integrity is to always document any portions of work you
submit ﬂllﬁlt are due to or influenced by other sources, even if those sources weren’t permitted by
the rules

Q1 (The Picture Mishap).

The back story:

You took some photos of smiley faces a while ago and knowing about the PCA algorithm, com-
pressed these photos. The original photos were of size 105 x 105 grey-scale images represented
as 11025 dimensional vectors. The compressed photos were 20 dimensional each along with the
projection matrix W of size 11025 x 20 and the mean vector y of size 11025 x 1.

"'We make an exception for sources that can be taken for granted in the instructional setting, namely, the course
materials. To minimize documentation effort, we also do not expect you to credit the course staff for ideas you get
from them, although it’s nice to do so anyway.



Accidentally one night, you deleted all but one of the compressed version of the photos and all
you have now is the projection matrix W, the mean vector i and the compressed 20 dimensional
vector of just the first image say y;. Fortunately for you, one of your friends has printed copies of
these photos. However as luck would have it, these photos were all stained with an identical stain
on all of them. To make things worse, your friend takes a picture of all these photos at an angle
(in this assignment for my ease a 90 degree angle but in general this is some unknown angle of
rotation) and emails these photos over to you. So now you have these 28 images all rotated and
all with identical stain on them. Can you use your knowledge of PCA to reconstruct your favorite
smiley photos?

Pedagogical nugget: The aim of this problem is to learn translation and rotation invariance
of PCA, and how we can use these property to do some cool stuff. Sample real-life setting: when
you get data measurements from different sources that didn’t check with each other ahead of time
and so some of the features might have been reordered. We shall build up to our finale by walking
you through various steps.

1. (warmup to make sure you have the right tools available and get used to them; nothing to
turn in for this part) Your first task is to generate 2 dimensional gaussian distributed random
variables. Generate 1000 gaussian distributed, 2-dimensional random variables X, such that
the first dimension of X is normal distributed with variance 1 and the second dimension
of X is independently drawn, normal distributed with variance 2. Scatter-plot these points.
They should look like an elongated ellipse (if they don’t look elongated look at range of X
and Y axis, they have to be the same). Now duplicate X and call it say Xgq,,,. First, we shall
rotate all the points in X4, by a 45 degree angle. Do this by multiplying X, with rotation

matrix
o cos(m/4) —sin(n/4) 1 [ 1/vV/2 —1/3/2
| sin(w/4)  cos(w/4) 1/vV2 1/V2
Now translate X4, by adding to every point in X, (i.e. every row) the vector (1,1). Now

scatter-plot in the same figure you plotted X s the points X d (with different color). You will
now see another elongated ellipse at a 45 degree angle with center roughly at (1, 1).

Run PCA on X and Xg,, to get two corresponding projection matrices W and W,,,. Recall
that the columns of these two matrices are the principal directions, i.e., the eigenvectors of
the corresponding covariance matrices. Then, apply the projections W and Wy, to their
corresponding data matrices X and Xg,;, to yield Y and Ygyp.

e Scatter plot Y and Yj,,. What do you see? Compare just the magnitude of first column
of Y with that of Y4, and similarly for the second column, what do you see?

e Look at W and Wy, these will be different, also look at Cov(X') and Cov(Xg4yp) the
covariance matrices corresponding to the two views, these will also be different.

When you examine Y and Yy,p, you should see that the absolute values of corresponding
entries are the same!



This part of the question, is more for you guys to get warmed up, nothing to turn in for this
part.

. Let’s now generalize what we’ve just observed. A rotation matrix is a square matrix whose
transpose is its inverse. (Intuition: a clockwise rotation can be undone via counterclockwise
rotation by the same angular amount.) As usual, let our n x d-dimensional data vectors be
denoted by x1,...,x, (example: the rows of your X matrix above) and let R be a d x d
rotation matrix.

For simplicity, you may assume that the x;s have been centered at 0. Let x; = Rx; + Vv
where v is some fixed translation. (example: the rows in your X d matrix above), forming a
second dataset.

Now, for any K we pick, let us use PCA on each of the two data sets to obtain /K -dimensional
projections y1,...,y, and y},...,y.,, respectively.

(a) Write down a relationship between the two PCA projection matrices W and W' in
terms of the rotation matrix R and the translation vector v. Explain mathematically
how you arrived at this answer.

(b) Explain why for any ¢ € {1,...,n}, the entries of y; and y; are the same up to sign.

Hint: to explain why the signs in corresponding entries might be flipped, consider the
following question: if a vector b is an eigenvector of matrix C', must it follow that -b
is?

. Now lets get back to our story of the “The Picture Mishap”.

Question: You have the projection matrix I/ given to you in the file W. csv, the mean vec-
tor 1 given in file Mu . csv and the first compressed face y;, a 20 dimensional compressed
vector given to you in Y1.csv. You are also given the bunch of stained rotated images
your friend emails you. To make it simpler for the assignment, we have already vectorized
these images and these are provided to you in the file Xbad.csv where each row of this
file is a vectorized version of each of the 28 images. The first image in this file corresponds
to the first compressed image y; you posses. Your goal is to reconstruct the matrix X of
original images (vectorized) and submit the file X . csv. Thatis X . csv has 28 rows, each
row corresponding to each of the 28 images. Each row has 11025 entries corresponding to
the vectorized version of the reconstructed images. You don’t need put these back in image
format, if you want to for your own curiosity, you can. The code snippet to take the vector-
ized version of reconstructed image ¢ and convert it into a 105 x 105 image is

For m = 1 to 105

For n = 1 to 105
I(n,m,t) = X(t, (m—1)*105+ n);
End
End



But remember you dont need to do this for the submission, this is only for your curiosity.

How to try out the above:

Remember that any two low-dimensional projections produced via PCA of the same data that
is only rotated and translated will have the same absolute values for the entries of the y’s but
might have their signs flipped on coordinates. This is annoying, but can be fixed because,
luckily, there exists that first image of the same smiley for which you have the original low
dimensional projection and also have the same image in stained and rotated formal. Take
your projection y; and the 20 dimensional projection y; corresponding to this face got by
performing PCA on the stained images. Now, if on any coordinate, the sign of y; and y; are
different, then for this coordinate flip the sign of all the y,’s. Finally, take the new y,’s and
perform image reconstruction.

02 (Uncovering Secrets (Multiple-view CCA)). The goal of this question is to get a better un-
derstanding of CCA and use it to uncover shared secrets among three friends.

Story: Three friends Alice(A), Bob(B) and Carol(C) all listen to 1000 songs on youtube. They each
provide 10 dimensional vectors describing each of the 1000 songs given to you in files XA . csv,
XB.csv and XC.csv. Only these vectors carry secret information about likes and dislikes en-
coded in them which can be uncovered only by the right linear projection technique. Your goal
in this problem is to extract the joint rating of all three Alice, Bob and Carol. Your second goal
is to extract the rating of songs that Alice and Bob secretly like that Carol is unaware of. The
information in the three sets of 10 dimensional vectors are all encoded linearly.

1. Use CCA to extract a one dimensional projection that retains the information that is common
to all three views. That is, you will get a 1 dimensional projection of (any one of the views)
which provide a rating/ like dislike that all three of A, B and C' share. Submit to us this one
dimensional vector in YABC. csv. Explain your solution.

2. Next use CCA to extract a one dimensional projection that pulls out information shared
between Alice and Bob but not Carol.
Hint: If you do CCA between Alice and Bob, the information will contain not only shared
information between Alice and Bob alone but also the information shared between all three.
Figure out a way to remove information common between all three from the information
shared between Alice and Bob. Submit to us this one dimensional vector in YAB. csv.
Explain your solution.

As a way for you to check your answers we are also providing you with label files Labe 1ABC.csv
and LabelAB. csv. If you threshold Y ABC" at 0 and use this to predict the labels Label ABC' it
should have a good accuracy (need not be 100%). Warning: after thresholding either > 0 or < 0
could indicate a label of 1. If you get very low accuracy in predicting the labels, thats a good sign
since you can simply flip labels. Similarly threshold Y AB at 0 and compare labels with Label AB.

Hint: The common information between A, B and C can be linearly projected finally only
to a single dimension. Similarly, the secret rating between A and B not shared with C again,
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in the end, can be linearly projected to one dimension. Another hint that might come in
handy: if the top eigen vectors represent common information then what do the bottom ones
for a given view represent?

03 (Random Projection Vs PCA). Your goal in this question is to generate two data sets con-
sisting of 100, 1000-dimensional points. For each point x; in the two data sets, ensure that their
norm (distance to 0) is exactly 1. We shall perform PCA and random projections on both the data
sets to K = 20 dimensions. The data sets should be such that on the first one PCA outperforms
random projection by a large margin and in the second, random projection outperforms PCA.

To evaluate our projections we shall use the following metric on how well the projections
preserve average inter point distances:

Err(yi,...,yn) = m Z Z H|Yj —yilly = 1% — Xin{

i=1 j=i+1

You shall pick K = 20 and perform PCA and random projections on both the data sets. Your
task in this problem is to create the data sets such that

e On the first data set, Err of PCA is much smaller compared to that of random projection.

e On the second data set, the Err of Random Projection is much smaller compared to that of
PCA.

Submit your two datasets as csv files PcaBeat sRp.csv and RpBeat sPCA. csv in the same
format we’ve used in the files we supplied you (so, they should be plain-text files with 100 lines,
each with 1000 comma-separated numbers in it). Also, in your assignment writeup, explain how
you generated the two data sets and the rationale behind this choice. Your rationale should explain
how you used the properties of what RP and PCA produce to guide your thinking.



