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WHEN TO USE CCA?

When we have redundancy in data.

When the relevant information is part of the redundancy

Same data point from two different view/sources



EXAMPLE I: SPEECH RECOGNITION

Audio might have background sounds uncorrelated with video

Video might have lighting changes uncorrelated with audio

Redundant information between two views: the speech

+



EXAMPLE II: COMBINING FEATURE EXTRACTIONS

Method A and Method B are both equally good feature extraction
techniques

Concatenating the two features blindly yields large dimensional
feature vector with redundancy

Applying techniques like CCA extracts the key information
between the two methods

Removes extra unwanted information



TWO VIEW DIMENSIONALITY REDUCTION

Data comes in pairs (x1,x
′
1), . . . , (xn,x ′n)where xt’s are d

dimensional and x

′
t ’s are d ′ dimensional

Goal: Compress say view one into y1, . . . ,yn, that are K
dimensional vectors

Retain information redundant between the two views

Eliminate “noise” specific to only one of the views



WHICH DIRECTION TO PICK?

View I View II



WHICH DIRECTION TO PICK?

View I View II



WHICH DIRECTION TO PICK?

View I View II



WHICH DIRECTION TO PICK?

View I View II



WHICH DIRECTION TO PICK?

Average dot product = covariance small

0 0

PCA direction



WHICH DIRECTION TO PICK?

Direction has large covariance



WHY NOT MAXIMIZE COVARIANCE

Say
1

n

nX

t=1

xt[2] · x0
t[2] > 0

Scaling up this coordinate we can blow up covariance
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WHY NOT MAXIMIZE COVARIANCE

Relevant  information

Say
1

n

nX
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xt[2] · x0
t[2] > 0

Scaling up this coordinate we can blow up covariance



BASIC IDEA OF CCA

Normalize variance in chosen direction to be constant (say 1)

Then maximize covariance

This is same as maximizing “correlation coefficient” (recall from
last class).



MAXIMIZING CORRELATION COEFFICIENT

Say w1 and v1 are the directions we choose to project in views 1
and 2 respectively we want these directions to maximize,
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CANONICAL CORRELATION ANALYSIS

Assume data in both views are centered : 1
n ∑n

t=1 xt = 0, 1
n ∑n

t=1 x

′
t = 0

Hence 1
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Hence we want to solve for projection vectors w1 and v1 that
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CANONICAL CORRELATION ANALYSIS
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CANONICAL CORRELATION ANALYSIS

Hence we want to solve for projection vectors w1 and v1 that

maximize w
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Writing Lagrangian taking derivative equating to 0 we get
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CCA ALGORITHM

Write x̃t = � xt
x

′
t
� the d + d ′ dimensional concatenated vectors.

Calculate covariance matrix of the joint data points

⌃ = � ⌃1,1 ⌃1,2
⌃2,1 ⌃2,2

�

Calculate ⌃−1
1,1⌃1,2⌃

−1
2,2⌃2,1. The top K eigen vectors of this matrix

give us projection matrix for view I.

Calculate ⌃−1
2,2⌃2,1⌃

−1
1,1⌃1,2. The top K eigen vectors of this matrix

give us projection matrix for view II.



CCA DEMO



THE TALL, THE FAT AND THE UGLY



The Tall, THE FAT AND THE UGLY

If d small, calculate covariance matrix
PCA of the single view
CCA for concatenated view

Do eigen decomposition of d × d matrix, computationally easy

X =



THE TALL, the Fat AND THE UGLY

If d large by d × n manageable, directly do Singular Value
Decomposition (SVD) of data matrix

X =



THE TALL, THE FAT AND the Ugly

d and n so large we can’t even store in memory
Only have time to be linear in n

I there any hope?

X =


