Machine Learning for Data Science (CS4786) Lecture 4

Canonical Correlation Analysis (CCA)

Course Webpage :
http://www.cs.cornell.edu/Courses/cs4786/2015sp/

WHEN TO USE CCA?

- When we have redundancy in data.
- When the relevant information is part of the redundancy
- Same data point from two different view/sources

EXample I: Speech Recognition

- Audio might have background sounds uncorrelated with video
- Video might have lighting changes uncorrelated with audio
- Redundant information between two views: the speech

Example II: Combining Feature Extractions

- Method A and Method B are both equally good feature extraction techniques
- Concatenating the two features blindly yields large dimensional feature vector with redundancy
- Applying techniques like CCA extracts the key information between the two methods
- Removes extra unwanted information

Two View Dimensionality Reduction

- Data comes in pairs $\left(\mathbf{x}_{1}, \mathbf{x}_{1}^{\prime}\right), \ldots,\left(\mathbf{x}_{n}, \mathbf{x}_{n}^{\prime}\right)$ where \mathbf{x}_{t}^{\prime} s are d dimensional and $x_{t}^{\prime \prime}$ s are d^{\prime} dimensional
- Goal: Compress say view one into $\mathbf{y}_{1}, \ldots, \mathbf{y}_{n}$, that are K dimensional vectors
- Retain information redundant between the two views
- Eliminate "noise" specific to only one of the views

- -

\because

View I

View II

Which Direction to Рick?

-

View I
View II

View I

View II

Which Direction to Рick?

(O)

- 0
-

View I
View II

Which Direction to Рick?

PCA direction

Average dot product $=$ covariance small

Direction has large covariance

Why not Maximize Covariance

$$
\text { Say } \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}[2] \cdot \mathbf{x}_{t}^{\prime}[2]>0
$$

Scaling up this coordinate we can blow up covariance

Why not Maximize Covariance

$$
\text { Say } \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}[2] \cdot \mathbf{x}_{t}^{\prime}[2]>0
$$

Scaling up this coordinate we can blow up covariance

Why not Maximize Covariance

Relevant information

$$
\text { Say } \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}[2] \cdot \mathbf{x}_{t}^{\prime}[2]>0
$$

Scaling up this coordinate we can blow up covariance

BASIC IDEA OF CCA

- Normalize variance in chosen direction to be constant (say 1)
- Then maximize covariance
- This is same as maximizing "correlation coefficient" (recall from last class).

Maximizing Correlation Coefficient

- Say \mathbf{w}_{1} and \mathbf{v}_{1} are the directions we choose to project in views 1 and 2 respectively we want these directions to maximize,

$$
\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1]\right) \cdot\left(\mathbf{y}_{t}^{\prime}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}^{\prime}[1]\right)
$$

s.t. $\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1]\right)^{2}=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}^{\prime}[1]-\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}^{\prime}[1]\right)=1$
where $\mathbf{y}_{t}[1]=\mathbf{w}_{1}^{\top} \mathbf{x}_{t}$ and $\mathbf{y}_{t}^{\prime}[1]=\mathbf{v}_{1}^{\top} \mathbf{x}_{t}^{\prime}$

Canonical Correlation Analysis

- Assume data in both views are centered : $\frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}=\mathbf{0}, \frac{1}{n} \sum_{t=1}^{n} \mathbf{x}_{t}^{\prime}=\mathbf{0}$ Hence $\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}^{\prime}[1]=\frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1]=0$
- Hence we want to solve for projection vectors \mathbf{w}_{1} and \mathbf{v}_{1} that

$$
\begin{aligned}
& \operatorname{maximize} \frac{1}{n} \sum_{t=1}^{n} \mathbf{y}_{t}[1] \cdot \mathbf{y}_{t}^{\prime}[1] \\
& \text { subject to } \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}[1]\right)^{2}=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{y}_{t}^{\prime}[1]\right)^{2}=1
\end{aligned}
$$

CanONical Correlation Analysis

- Hence we want to solve for projection vectors \mathbf{w}_{1} and \mathbf{v}_{1} that

$$
\begin{aligned}
& \operatorname{maximize} \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}_{1}^{\top} \mathbf{x}_{t} \cdot \mathbf{v}_{1}^{\top} \mathbf{x}_{t}^{\prime} \\
& \text { subject to } \frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{w}_{1}^{\top} \mathbf{x}_{t}\right)^{2}=\frac{1}{n} \sum_{t=1}^{n}\left(\mathbf{v}_{1}^{\top} \mathbf{x}_{t}^{\prime}\right)^{2}=1
\end{aligned}
$$

CanONical Correlation Analysis

- Hence we want to solve for projection vectors \mathbf{w}_{1} and \mathbf{v}_{1} that

$$
\begin{aligned}
& \text { maximize } \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}_{1}^{\top} \mathbf{x}_{t} \mathbf{x}_{t}^{\prime \top} \mathbf{v}_{1} \\
& \text { subject to } \frac{1}{n} \sum_{t=1}^{n} \mathbf{w}_{1}^{\top} \mathbf{x}_{t} \mathbf{x}_{t}^{\top} \mathbf{w}_{1}=\frac{1}{n} \sum_{t=1}^{n} \mathbf{v}_{1}^{\top} \mathbf{x}_{t}^{\prime} \mathbf{x}_{t}^{\prime \top} \mathbf{v}_{1}=1
\end{aligned}
$$

Canonical Correlation Analysis

- Hence we want to solve for projection vectors \mathbf{w}_{1} and \mathbf{v}_{1} that

$$
\begin{aligned}
& \operatorname{maximize} \mathbf{w}_{1}^{\top} \Sigma_{1,2} \mathbf{v}_{1} \\
& \text { subject to } \mathbf{w}_{1}^{\top} \Sigma_{1,1} \mathbf{w}_{1}=\mathbf{v}_{1}^{\top} \Sigma_{2,2} \mathbf{v}_{1}=1
\end{aligned}
$$

- Writing Lagrangian taking derivative equating to 0 we get

$$
\Sigma_{1,2} \Sigma_{2,2}^{-1} \Sigma_{2,1} \mathbf{w}_{1}=\lambda^{2} \Sigma_{1,1} \mathbf{w}_{1} \quad \text { and } \quad \Sigma_{2,1} \Sigma_{1,1}^{-1} \Sigma_{1,2} \mathbf{v}_{1}=\lambda^{2} \Sigma_{2,2} \mathbf{v}_{1}
$$

or equivalently

$$
\left(\Sigma_{1,1}^{-1} \Sigma_{1,2} \Sigma_{2,2}^{-1} \Sigma_{2,1}\right) \mathbf{w}_{1}=\lambda^{2} \mathbf{w}_{1} \quad \text { and } \quad\left(\Sigma_{2,2}^{-1} \Sigma_{2,1} \Sigma_{1,1}^{-1} \Sigma_{1,2}\right) \mathbf{v}_{1}=\lambda^{2} \mathbf{v}_{1}
$$

CCA Algorithm

- Write $\tilde{\mathbf{x}}_{t}=\left[\begin{array}{c}\mathbf{x}_{t} \\ \mathbf{x}_{t}^{\prime}\end{array}\right]$ the $d+d^{\prime}$ dimensional concatenated vectors.
- Calculate covariance matrix of the joint data points

$$
\Sigma=\left[\begin{array}{cc}
\Sigma_{1,1} & \Sigma_{1,2} \\
\Sigma_{2,1} & \Sigma_{2,2}
\end{array}\right]
$$

- Calculate $\Sigma_{1,1}^{-1} \Sigma_{1,2} \Sigma_{2,2}^{-1} \Sigma_{2,1}$. The top K eigen vectors of this matrix give us projection matrix for view I.
- Calculate $\Sigma_{2,2}^{-1} \Sigma_{2,1} \Sigma_{1,1}^{-1} \Sigma_{1,2}$. The top K eigen vectors of this matrix give us projection matrix for view II.

CCA Demo

The Tall, the Fat and the Ugly

- If d small, calculate covariance matrix
- PCA of the single view
- CCA for concatenated view
- Do eigen decomposition of $d \times d$ matrix, computationally easy

THE TALL, the Fat AND THE UGLY

$$
X=
$$

- If d large by $d \times n$ manageable, directly do Singular Value Decomposition (SVD) of data matrix

THE TALL, THE FAT AND the Ugly

$X=$

- d and n so large we can't even store in memory
- Only have time to be linear in n

I there any hope?

