
Machine	Learning	for	
Intelligent	Systems

Instructors:	Nika	Haghtalab (this	time)	and	Thorsten	Joachims

Lecture	23:	Online	Learning

Reading:	UML	21	and	Blum&Mansour chapter

Statistical	Learning	Recap

PAC	learning:

• Data	set	𝑆 of	𝑚 samples	is	drawn	i.i.d.	from	

distribution	𝑃.

• Using	this	data	set	we	want	to	find	ℎ%

• So,	that	𝑒𝑟𝑟(ℎ% ≤ min
-∈/

𝑒𝑟𝑟(ℎ + 𝜖

• It	works	if	𝑚 ≥ 34
56

𝑉𝐶𝐷𝑖𝑚(𝐻)+ ln ?
@

.

Online	Learning
The	data	might	not	be	coming	from	a	distribution:

• Today’s	data	can	depend	on	yesterday’s	data	and	decision.

• Environment	is	evolving	over	time	in	an	unpredictable	way.

• We	don’t	want	to	make	any	assumptions	on	how	the	data	evolves.

• We	want	to	make	decisions	on	any	instance	as	soon	as	it	arrives.

Sequence	of	data	and	learning	tasks:
• On	round	𝑡 we		are	given	𝑥C and	unknown	label	𝑦C = ℎ∗(𝑥C)
for	a	fixed	ℎ∗ ∈ 𝐻.

• We	predict	 G𝑦C ,	after	the	prediction	we	see	if	we	made	a	
mistake	or	not.

• Goal:	Bound	the	number	of	mistakes	we	make.

Online	Learning	framework	(realizable)

Recall:	Online	Perceptron

Given	a	sequence	of	data	 𝑥⃗?, 𝑦? , 𝑥⃗J, 𝑦J , … , (𝑥⃗L, 𝑦L) one	by	

one,	with	radius	𝑅 and	margin	𝛾 ≔ min
P∈%

QR(S∗⋅U⃗R)
∥S∗∥

for	some	𝑤∗.

Online	prediction:	At	each	time	use	the	current	𝑤 to	predict	
the	label	of	incoming	 𝑥⃗P, 𝑦P ,	update	if	needed.
Mistake	Bound: The	number	of	mistake	that	perceptron	makes	
is	at	most	 ⁄𝑅J 𝛾J.

Theorem:	Mistake	Bound	of	Online	Perceptron

Mistake	Bound	Model

An	algorithm	𝐴𝑙𝑔 learns	a	hypothesis	class	𝐻 if	𝐴𝑙𝑔make	no	more	
than	𝑀mistakes	on	any	sequence	 𝑥?, 𝑦? , 𝑥J, 𝑦J , 𝑥], 𝑦] , … that	
is	consistent	with	some	ℎ∗ ∈ 𝐻.

Mistake	Bound

Goal:	Upper	bounding	the	mistake	bound.

Adversarial

Let	𝑋 = {1,… , 𝑛} be	the	instance	space.	Let	𝐻 = ℎd 𝑎 ∈ {1,… , 𝑛}}
where	ℎd 𝑥 = 1(𝑥 ≥ 𝑎).

• 𝑥f:	The	right-most	instance	labeled −1
• 𝑥h:	The	left-most instance	labeled	+1

Any	𝐴𝑙𝑔 can	be	forced	to	make	≥ logJ(𝑛)mistakes.
àMistake	bound	is	at	least logJ(𝑛).

There	is	a	strategy	that	makes	no	more	than	logJ(𝑛)mistakes.
àUse	the	algorithm	that	at	any	time	

• Predict	using	ℎd(.) for	𝑎 halfway	between 𝑥f and 𝑥h.
àOn	mistake:	Distance	between	𝑥f and 𝑥h is	halved	(or	smaller)

• No	more	mistakes	can	be	made	when	|𝑥f − 𝑥h| = 1.
• 𝑛 → m

J
→ m

n
→ … .→ 1.

Example:	1-D	thresholds	(discrete)

logJ(𝑛)

Recall	that	the	sequence	is	consistent	with	some	ℎ∗ ∈ 𝐻.	So,	the	
version	space	will	be	non-empty.

Idea:	Start	with	all	consistent	hypotheses.	On	mistake,	make	
sure	we	can	significantly	narrow	down	the	set	of	consistent	
hypotheses.

Halving:	A	generic	Algorithm

Let	𝑉𝑆? = 𝑉𝑆 𝐻, ∅ //	This	is	equal	to	𝐻
For	𝑡 = 1,… , 𝑇
• Receive	𝑥C and	predict	the	same	label	 q𝑦C as	the	majority	of	ℎ ∈ 𝑉𝑆C.
• 𝑉𝑆Ch? = 𝑉𝑆C ∖ {ℎ: ℎ 𝑥C ≠ 𝑦C} //Remove	the	wrong	hypotheses

Halving	Algorithm

Halving:	A	generic	Algorithm

For	any	𝑯,	Halving’s	mistake	bound	is	≤ 𝒍𝒐𝒈𝟐(|𝑯|) .
Proof: If	we	make	a	mistake	at	time	𝑡,	majority	of	𝑉𝑆C were	wrong	à

𝑉𝑆Ch? ≤ ?
J |𝑉𝑆C|.	After	logJ(|𝐻|)mistakes,	only	one	hypothesis	is	left.

Theorem:	Mistake	Bound	of	Halving

ℎ? ℎJ ℎ] ℎn ℎz ℎ{ ℎ| Alg
Include	at	𝑡 = 1? ✓ ✓ ✓ ✓ ✓ ✓ ✓
Prediction	(𝑥?, −)? + + - + - + - +,	mistake
Include	at	𝑡 = 2 ✓ ✓ ✓
Prediction	(𝑥J, +)? + + - +,	correct
Include	at	𝑡 = 3 ✓ ✓
Prediction	(𝑥], −)? - - -,	correct
Include	at	𝑡 = 4 ✓ ✓

If	no	consistent	ℎ∗ ∈ 𝐻,we	can	make	infinitely	many	mistakes.

Compare	with	the	best	(not	necessarily	consistent)	ℎ∗ ∈ 𝐻.
• Each	ℎ ∈ 𝐻 is	an	“expert”	that	gives	you	advice.
• Want	to	do	nearly	as	well	as	the	best	“expert”,	in	hindsight.

No	Consistent	Hypothesis

Online	algorithm	that	on	sequence	 𝑥?, 𝑦? , 𝑥J, 𝑦J , … , 𝑥�, 𝑦�
makes	predictions	 q𝑦?, q𝑦J, … , q𝑦� ,	

Algorithm�s # mistakes: M =�
C�?

�

1 q𝑦C ≠ 𝑦C

Best Expert�s # mistakes: OPT = min
-∗∈/

�
C�?

�

1 ℎ∗(𝑥C) ≠ 𝑦C

Is	M close	to	OPT?

Halving	Algorithm:
• A	mistake	completely	disqualifies	an	expert ℎ.
• Predict	with	the	majority	of	the	remaining	experts.
Weighted	Majority	Algorithm:
• A	mistake	lowers	the	weight of	an	expert ℎ.
• Predict	with	the	weighted	majority	of	the	experts.

Attempt	1:	Weighted	Majority

ℎ? ℎJ ℎ] ℎn ℎz ℎ{ ℎ| Alg
Weight	𝑡 = 1? 1 1 1 1 1 1 1

Prediction	(𝑥?, −)? + + - + - + - +,	mistake
Include	at	𝑡 = 2 1/2 1/2 1 1/2 1 1/2 1

Prediction	(𝑥J, +)? - - + - + - - -,	mistake
Include	at	𝑡 = 3 1/4 1/4 1 1/4 1 1/4 1/2

Halving	Algorithm:
• A	mistake	completely	disqualifies	an	expert ℎ.
• Predict	with	the	majority	of	the	remaining	experts.
Weighted	Majority	Algorithm:
• A	mistake	lowers	the	weight of	an	expert ℎ.
• Predict	with	the	weighted	majority	of	the	experts.

Attempt	1:	Weighted	Majority

Initialize	weights	𝑤-
(?) = 1 for	all	ℎ ∈ 𝐻.

For	𝑡 = 1,…𝑇
On	𝑥C predict	

q𝑦C = argmaxQ �
-∈/

𝑤-
(C)×1(ℎ 𝑥C = 𝑦)

For	ℎ ∈ 𝐻
If	ℎ(𝑥C) ≠ 𝑦C then	𝑤-

(Ch?) = 𝑤-
(C)𝛽,	else	𝑤-

(Ch?) = 𝑤-
(C).

(Deterministic)	Weighted	Majority	with	parameter	𝛽

Weighted	Majority	Guarantees

For	M:Algorithms # mistakes and	OPT: best expert�s # mistakes, the	
(Deterministic)	weighted	majority	algorithm	with	𝛽 = 0.5 gets

𝑀 ≤ 2.4(𝑙𝑜𝑔J 𝐻 + 𝑂𝑃𝑇) .

Theorem:	Guarantees	of	Weighted	Majority	𝛽 = 0.5

Proof	Idea:	

• Best	ℎ∗makes	OPTmistakes,	so	𝑤-∗
� = ?

J

�(�
.

• The	total	weight	at	𝑡 = 1 of	all	experts	is	W = 𝐻
• On	every	mistake,	half	of	the	weight	is	on	experts	that	made	a	mistake.

àTheir	weight	is	cut	by	half.	Total	weight	W ← ?
J𝑊 + ?

J𝑊 0.5 =]
n𝑊.

àAfter	𝑀mistakes,	𝑊 ≤ 𝐻]
n

¡
.

• We	have	

1
2

�(�
≤ 𝐻

3
4

¡ 4
3

¡
≤ 𝐻 2�(� 𝑀 ≤ 2.4(logJ 𝐻 + 𝑂𝑃𝑇)

• 𝑀 ≤ 2.4(𝑙𝑜𝑔J 𝐻 + 𝑂𝑃𝑇) is	good	if	𝑂𝑃𝑇 is	small.
• If	𝑂𝑃𝑇 is	close	to	𝑇/2 then	this	bound	allows	us	to	make	a	mistake	
on	every	turn.

• Want	to	show	that	𝑀 −𝑂𝑃𝑇 is	small
à Ideally,	smaller	than	𝑜 𝑇 .
àOn	average	over	𝑇 timesteps,	we	do	nearly	as	well	as	the	best	
expert.

Idea:	Smoothly	transition	between	predicting	+	or	– based	on	the	
weights.
àWeighted	majority:	49%	+,	51%	-,	predict	–
àRandomized	Weighted	majority	49%	+, 51%	-,	predict	+ with	0.49	
probability	and	– with	0.51	probability.

à Allow	less	aggressive	𝛽.

Attempt	2:	Randomized	Decisions

Randomized	Weighted	Majority
Initialize	weights	𝑤-

(?) = 1 for	all	ℎ ∈ 𝐻.
For	𝑡 = 1,…𝑇

Let𝑊C = ∑-∈/𝑤-C be	the	total	weight	at	step	𝑡.
On 𝑥C
Predict q𝑦 with	probability	

?
¤¥ ∑-∈/𝑤-

(C)×1(ℎ 𝑥C = q𝑦)
For	ℎ ∈ 𝐻, if	ℎ(𝑥C) ≠ 𝑦C then	𝑤-

(Ch?) = 𝑤-
C (1 − 𝜖),	else	𝑤-

(Ch?) = 𝑤-
(C).

(Randomized)	Weighted	Majority	with	parameter	1 − 𝜖

For	M:Algorithms # mistakes and	OPT: best expert�s # mistakes, the	
randomized	weighted	majority	algorithm	with	parameter	1 − 𝜖 gets	

𝔼 𝑀 ≤ 1 + 𝜖 𝑂𝑃𝑇 +
1
𝜖 logJ 𝐻 .

For 𝜖 = §¨©6 /
�(� ,	get 𝔼 𝑀 ≤ 𝑂𝑃𝑇 + 2 𝑇 logJ |𝐻|.

Theorem:	Guarantees	of	Rand.	Weighted	Majority

Regret

Online	algorithm	that	on	sequence	 𝑥?, 𝑦? , 𝑥J, 𝑦J , … , 𝑥�, 𝑦�
makes	predictions	 q𝑦?, q𝑦J, … , q𝑦� ,	

REGRET =�
C�?

�

1 q𝑦C ≠ 𝑦C − min
-∗∈/

�
C�?

�

1 ℎ∗(𝑥C) ≠ 𝑦C

Definition:	Regret

For	randomized	weighted	majority	when	𝜖 = §¨©6 /
�(� ,	we	have

𝔼 REGRET ≤ 2 𝑇 logJ |𝐻|.

Theorem:	Regret	of	Rand.	Weighted	Majority

M:	Algorithm’s	#	Mistakes OPT:	Algorithm’s	#	Mistakes

