Machine Learning for
Intelligent Systems

Lecture 23: Online Learning

Reading: UML 21 and Blum&Mansour chapter

Instructors: Nika Haghtalab (this time) and Thorsten Joachims



Statistical Learning Recap

PAC learning:
 Data set S of m samples is drawn i.i.d. from
distribution P.

* Using this data set we want to find hg

* So,thaterrp(hg) < rr{lellgl errp(h) + €

e Itworksifm > —= (VCDlm(H) +ln( ))



Online Learning

The data might not be coming from a distribution:

* Today’s data can depend on yesterday’s data and decision.

* Environment is evolving over time in an unpredictable way.
 We don’t want to make any assumptions on how the data evolves.

 We want to make decisions on any instance as soon as it arrives.

/ Online Learning framework (realizable) \
Sequence of data and learning tasks:

* Onroundt we are given x; and unknown label y; = h*(x;)
for a fixed h™ € H.

* We predict y;, after the prediction we see if we made a
mistake or not.

\’ Goal: Bound the number of mistakes we make. )




Recall: Online Perceptron

/ Theorem: Mistake Bound of Online Perceptron \

Given a sequence of data (X1, v1), (X5, ¥53), ..., (X, Vi) ODE by

one, with radius R and margin y := mlbp % for some w*.
AS

Online prediction: At each time use the current w to predict
the label of incoming (X;, y;), update if needed.
Mistake Bound: The number of mistake that perceptron makes

/

is at most R?/y?.

-




Mistake Bound Model

e Mistake Bound ~N

An algorithm Alg learns a hypothesis class H if Alg make no more
than M mistakes on any sequence le, v1 ), (x5, v5), (x3, yg)J. that

is consistent with some h* € H. s
Adversarial ‘\
\_ J

Goal: Upper bounding the mistake bound.




Example: 1-D thresholds (discrete)

Let X = {1, ...,n} be the instance space. Let H = {h,|a € {1, ..., n}}
where h,(x) = 1(x = a).

* x~: The right-most instance labeled —1
« x*: The left-most instance labeled +1

Any Alg can be forced to make > log,(n) mistakes.
—>Mistake bound is at least log, (n).

There is a strategy that makes no more than log, (n) mistakes.

- Use the algorithm that at any time
* Predict using h,(.) for a halfway between x~ and x™.

- On mistake: Distance between x~ and x™ is halved (or smaller)
« No more mistakes can be made when [x~ — x| = 1.

n n
nN->——>-- ...—» 1.
N 2 4 )
Y

log,(n)



Halving: A generic Algorithm

Recall that the sequence is consistent with some h* € H. So, the
version space will be non-empty.

Idea: Start with all consistent hypotheses. On mistake, make
sure we can significantly narrow down the set of consistent
hypotheses.

e Halving Algorithm — ~N
LetVS; = VS(H, ) // This is equal to H
Fort=1,..,T

* Receive x; and predict the same label y; as the majority of h € V' S,.
* VSiy1 = VS \ {h:h(xt) # y¢} //Remove the wrong hypotheses )




Halving: A generic Algorithm

hy | hy | h3 | hy | hs | hg | hy Alg

Include att = 17 VAR VAR ERVAR IV VAN BRVAN V4
Prediction (x4, —)? + - - + - - - +, mistake
Include att = 2 v v v
Prediction (x,, +)? = = - +, correct
Include att = 3 v v
Prediction (x5, —)? - - -, correct
Include att = 4 v v

s Theorem: Mistake Bound of Halving

For any H, Halving’s mistake bound is < log,(|H|) .
Proof: If we make a mistake at time t, majority of VS; were wrong =

VSiial < %|V5t|. After log, (|H|) mistakes, only one hypothesis is left.
\_

J




No Consistent Hypothesis

If no consistent h* € H, we can make infinitely many mistakes.

Compare with the best (not necessarily consistent) h* € H.
 Each h € H is an “expert” that gives you advice.

* Want to do nearly as well as the best “expert”, in hindsight.

/Online algorithm that on sequence (x4, y; ), (x5, v2), ..., (X7, V1) \
makes predictions V4, Vo, ..., V7,

1 # ye)
1

Algorithm’s # mistakes: M =

T
t=

h*€eH

Qs M close to OPT? /

T
Best Expert’s # mistakes: OPT = min z 1(h*(x¢) # ¥e)
t=1




Attempt 1: Weighted Majority

Halving Algorithm:

* A mistake completely disqualifies an expert h.

* Predict with the majority of the remaining experts.
Weighted Majority Algorithm:

* A mistake lowers the weight of an expert h.

* Predict with the weighted majority of the experts.

hy | hy | h3 | hy | hg | hg | hy Alg
Weightt = 1? 1 1 1 1 1 1 1
Prediction (x4, —)? + + - + - + - +, mistake
Include att = 2 1/211/2 1 (1/2| 1 |1/2] 1
Prediction (x,, +)? - - + - + - - -, mistake
Include att = 3 1/411/4| 1 |(1/4]| 1 |1/4]1/2




Attempt 1: Weighted Majority

Halving Algorithm:

* A mistake completely disqualifies an expert h.

* Predict with the majority of the remaining experts.
Weighted Majority Algorithm:

* A mistake lowers the weight of an expert h.

* Predict with the weighted majority of the experts.

(Deterministic) Weighted Majority with parameter 8

Initialize weights wigl) = 1forallh € H.

Fort=1,..T
On x; predict

y: = argmax,, Z W,Et)xl(h(xt) =)
heH

Forh e H
\ If h(x;) # y; then W,(ltﬂ) = W}Et)ﬁ, else W}Et+1) = W,Et).




Weighted Majority Guarantees

-

.

Theorem: Guarantees of Weighted Majority f = 0.5

For M: Algorithms # mistakes and OPT: best expert’s # mistakes, the
(Deterministic) weighted majority algorithm with f = 0.5 gets

M < 2.4(log,(|H|) + OPT).

Proof Idea:

_ . 1\ OPT
Best h* makes OPT mistakes, so wy« = (—) .

2

* The total weight att = 1 of all expertsis W = |H|
* On every mistake, half of the weight is on experts that made a mistake.

—>Their weight is cut by half. Total weight W « %W + %W(O.S) = ZW.

(1

. 3\M
- After M mistakes, W < |H| (Z) .
 We have

2

OPT

<

3

4

M 4 M
) BN (g) < |H|20PT —— M < 2.4(log,|H| + OPT)




Attempt 2: Randomized Decisions

* M < 2.4(log,(|H|) + OPT) is good if OPT is small.

* If OPT is close to T /2 then this bound allows us to make a mistake
on every turn.

 Want to show that M — OPT is small
—> Ideally, smaller than o(T).

- 0n average over T timesteps, we do nearly as well as the best
expert.

Idea: Smoothly transition between predicting + or - based on the
weights.

- Weighted majority: , 51% -, predict -

- Randomized Weighted majority , 51% -, predict + with 0.49
probability and - with 0.51 probability.

—> Allow less aggressive f3.



Randomized Weighted Majority

/ (Randomized) Weighted Majority with parameter 1 — € \

Initialize weights W,El) = 1forallh € H.

Fort=1,..T
Let Wt =Y,y wi be the total weight at step t.
On x;

Predict § with probability - 2 neg W ,Et)xl(h(xt) =9)
For h € H,if h(x;) # y; then W( +1) ,Et)(l — €), else ,g D= ,Et).

-

_/

Theorem: Guarantees of Rand. Weighted Majority \

For M: Algorithms # mistakes and OPT: best expert’s # mistakes, the
randomized weighted majority algorithm with parameter 1 — € gets

E[M] < (1 +€)OPT + %logz(lHl).

log, |H|
Fore = |22, get E[M] < OPT + 2/Tlog; |H|.

- _/




Regret

Definition: Regret
4 )

Online algorithm that on sequence (x4, y; ), (x5, v5), ..., (X7, V1)
makes predictions y, ¥, ..., V1,

T T
REGRET = z 1(J: # y¢;) — min z 1(h™(xe) # yt)
t=1 t=1

h*eH
J \ )
Y Y
\ M: Algorithm'’s # Mistakes = OPT: Algorithm’s # Mistakes /
e Theorem: Regret of Rand. Weighted Majority ~
: . .. 1 H
For randomized weighted majority when € = Og; lT | , we have

E[REGRET] < 2,/T log, |H]|.




