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Outline 

• Supervised vs. Unsupervised Learning 

• Hierarchical Clustering 

– Hierarchical Agglomerative Clustering (HAC) 

• Non-Hierarchical Clustering 

– K-means 

– Mixtures of Gaussians and EM-Algorithm 

Supervised Learning  
vs. Unsupervised Learning 

• Supervised Learning 
– Classification: partition examples into groups 

according to pre-defined categories 
– Regression: assign value to feature vectors 
– Requires labeled data for training 

• Unsupervised Learning 
– Clustering: partition examples into groups when no 

pre-defined categories/classes are available 
– Outlier detection: find unusual events (e.g. hackers)  
– Novelty detection: find changes in data 
– Only instances required, but no labels 

Clustering 

• Partition unlabeled examples into disjoint subsets of 
clusters, such that: 

– Examples within a cluster are similar 

– Examples in different clusters are different 

• Discover new categories in an unsupervised manner 
(no sample category labels provided). 

Applications of Clustering 

• Exploratory data analysis 
• Cluster retrieved documents  

– to present more organized and understandable results to 
user  “diversified retrieval” 

• Detecting near duplicates  
– Entity resolution 

• E.g. “Thorsten Joachims” == “Thorsten B Joachims” 

– Cheating detection 

• Automated (or semi-automated) creation of 
taxonomies  
– e.g. Yahoo, DMOZ 

• Compression 
 

Applications of Clustering 

http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
http://nlp.stanford.edu/IR-book/
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Clustering Example Clustering Example 

Clustering Example Clustering Example 

Clustering Example Similarity (Distance) Measures 
• Euclidian distance (L2 norm): 
 
  

 
• L1 norm: 

 
 
 
• Cosine similarity: 

 
 
 

• Kernels 
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Hierarchical Clustering 

• Build a tree-based hierarchical taxonomy from a 
set of unlabeled examples. 

 

 

 

 

 

• Recursive application of a standard clustering 
algorithm can produce a hierarchical clustering. 
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invertebrate 

Agglomerative vs. Divisive 
Clustering 

• Agglomerative (bottom-up) methods start with each 
example in its own cluster and iteratively combine 
them to form larger and larger clusters. 

• Divisive (top-down) separate all examples 
immediately into clusters. 

animal 

vertebrate 

fish reptile amphib. mammal      worm insect crustacean 

invertebrate 

Hierarchical Agglomerative 
Clustering (HAC) 

• Assumes a similarity function for determining the 
similarity of two clusters. 

• Starts with all instances in a separate cluster and then 
repeatedly joins the two clusters that are most similar 
until there is only one cluster. 

• The history of merging forms a binary tree or hierarchy. 
• Basic algorithm: 

• Start with all instances in their own cluster. 
• Until there is only one cluster: 

• Among the current clusters, determine the two  
  clusters, ci and cj, that are most similar. 
• Replace ci and cj with a single cluster ci  cj  

Cluster Similarity 

• How to compute similarity of two clusters each 
possibly containing multiple instances? 

– Single link: Similarity of two most similar members. 

– Complete link: Similarity of two least similar 
members. 

– Group average: Average similarity between 
members. 

Single-Link HAC 
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• When computing cluster similarity, use maximum 
similarity of pairs: 
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→ Can result in “straggly” 
(long and thin) clusters 
due to chaining effect. 

Complete-Link HAC 
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• When computing cluster similarity, use minimum 
similarity of pairs: 
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→ Makes more “tight,” 
spherical clusters. 
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Computational Complexity of HAC 

• In the first iteration, all HAC methods need to 
compute similarity of all pairs of n individual 
instances which is O(n2). 

• In each of the subsequent O(n) merging 
iterations, must find smallest distance pair of 
clusters  Maintain heap O(n2 log n)  

• In each of the subsequent O(n) merging 
iterations, it must compute the distance between 
the most recently created cluster and all other 
existing clusters. Can this be done in constant 
time such that O(n2 log n) overall? 

Computing Cluster Similarity 

• After merging ci and cj, the similarity of the 
resulting cluster to any other cluster, ck, can be 
computed by: 

– Single Link: 

 

 

– Complete Link: 

)),(),,(max()),(( kjkikji ccsimccsimcccsim 

)),(),,(min()),(( kjkikji ccsimccsimcccsim 

c2 c1 x5 

c2 

c1 1 0.5 

x5 0.5 1 

x1 x2 c1 x5 

x1 1 0.8 0.3 

x2 0.8 1 0.2 

c1 0.5 

x5 0.3 0.2 0.5 1 

Single-Link Example 
x1 x2 x3 x4 x5 

x1 1 0.8 0.2 0.7 0.3 

x2 0.8 1 0.1 0.5 0.2 

x3 0.2 0.1 1 0.9 0.5 

x4 0.7 0.5 0.9 1 0.4 

x5 0.3 0.2 0.5 0.4 1 

x1 x2 c1 x5 

x1 1 0.8 0.7 0.3 

x2 0.8 1 0.5 0.2 

c1 0.7 0.5 1 0.5 

x5 0.3 0.2 0.5 1 

Merge x3,x4 
replace with max 

c2 c1 x5 

c2 1 0.7 0.3 

c1 0.7 1 0.5 

x5 0.3 0.5 1 

Merge x1,x2 
replace with max 

c3 x5 

c3 1 0.5 

x5 0.5 1 

Merge c1,c2 
replace with max 

Group Average  
Agglomerative Clustering 

• Use average similarity across all pairs within 
the merged cluster to measure the similarity 
of two clusters. 

 

 

 

• Compromise between single and complete 
link. 
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Computing  
Group Average Similarity 

• Assume cosine similarity and normalized 
vectors with unit length. 

• Always maintain sum of vectors in each 
cluster. 

 

• Compute similarity of clusters in constant 
time: 
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Non-Hierarchical Clustering 

• K-means clustering (“hard”) 

• Mixtures of Gaussians and training via 
Expectation maximization Algorithm (“soft”) 


