Learning with Humans in the Loop

CS4780/5780 – Machine Learning Fall 2014

> Thorsten Joachims Cornell University

Optional Reading:

 Yisong Yue, J. Broder, R. Kleinberg, T. Joachims, The K-armed Dueling Bandits Problem, Conference on Learning Theory (COLT), 2009.
 P. Shivaswamy, T. Joachims, Online Structured Prediction via Coactive Learning, International Conference on Machine Learning (ICML), 2012.

User-Facing Machine Learning • Examples - Search Engines - Netflix - Smart Home - Robot Assistant • Learning - Gathering and maintenance of knowledge - Measure and optimize performance - Personalization

ArXiv.org: Experiment Setup Phase I: 36 days Users randomly receive ranking from Orig, Flat, Rand Phase II: 30 days Users randomly receive ranking from Orig, Swap2, Swap4 User are permanently assigned to one experimental condition based on IP address and browser. Basic Statistics 700 queries per day / ~300 distinct users per day Quality Control and Data Cleaning Test run for 32 days Heuristics to identify bots and spammers All evaluation code was written twice and cross-validated

Arxiv.org: Interleaving Experiment

- Experiment Setup
 - Phase I: 36 days
 - Balanced Interleaving of (Orig,Flat) (Flat,Rand) (Orig,Rand)
 - Phase II: 30 days
 - Balanced Interleaving of (Orig,Swap2) (Swap2,Swap4) (Orig,Swap4)
- · Quality Control and Data Cleaning
 - Same as for absolute metrics

Yahoo and Bing: Interleaving Results

- Yahoo Web Search [Chapelle et al., 2012]
 - Four retrieval functions (i.e. 6 paired comparisons)
 - Balanced Interleaving
 - $\boldsymbol{\rightarrow}$ All paired comparisons consistent with ordering by NDCG.
- Bing Web Search [Radlinski & Craswell, 2010]
 - Five retrieval function pairs
 - Team-Game Interleaving
 - $\boldsymbol{\rightarrow}$ Consistent with ordering by NDGC when NDCG significant.

Learning on Operational System

- Example: 4 retrieval functions: A > B >> C > D
 - 10 possible pairs for interactive experiment
 - (A,B) → low cost to user
 - (A,C) → medium cost to user
 - (C,D) \rightarrow high cost to user
 - (A,A) → zero cost to user
- Minimizing Regret
 - Don't present "bad" pairs more often than necessary
 - Trade off (long term) informativeness and (short term) cost
 - Definition: Probability of (f_t, f_t') losing against the best f^*

$$R(A) = \sum_{t=1}^{7} [P(f^* \succ f_t) - 0.5] + [P(f^* \succ f_t') - 0.5]$$

→ Dueling Bandits Problem

[Yue, Broder, Kleinberg, Joachims, 2010]

Who does the exploring? Example 2 | International Content of the Content of the

Coactive Preference Perceptron • Model - Linear model of user utility: $U(y|x) = w^T \phi(x,y)$ • Algorithm • FOR t = 1 TO T DO - Observe x_t - Present $y_t = \operatorname{argmax}_v \{ w_t^T \phi(x_t,y) \}$ - Obtain feedback \tilde{y}_t from user - Update $w_{t+1} = w_t + \phi(x_t, \tilde{y}_t) - \phi(x_t, y_t)$ • This may look similar to a multi-class Perceptron, but - Feedback \tilde{y}_t is different (not get the correct class label) - Regret is different (misclassifications vs. utility difference) $R(A) = \frac{1}{T} \sum_{t=1}^{T} [U(y_t^*|x) - U(y_t|x)]$ Never revealed: • cardinal feedback • optimal y^* (Shivawamay, Jouchins, 2012)

