Statistical Learning Theory: Weighted Experts and Bandits

CS4780/5780 – Machine Learning Fall 2014

> Thorsten Joachims Cornell University

Reading: Mitchell Chapter 7.5

Expert Learning Model

- Setting
 - -N experts named $H = \{h_1, ..., h_N\}$
 - Each expert \mathbf{h}_i takes an action $y = h_i(\mathbf{x}_t)$ in each round t and incurs loss $\Delta_{t,i}$
 - Algorithm can select which expert's action to follow in each round
- Interaction Model
 - FOR t from 1 to T
 - Algorithm selects expert h_{i_t} according to strategy $\mathbf{A}(w_t)$ and follows its action \mathbf{y}
 - Experts incur losses $\Delta_{t,1}$... $\Delta_{t,N}$
 - Algorithm incurs loss Δ_{t,i_t}
 - Algorithm updates w_t to w_{t+1} based on $\Delta_{t,1}$... $\Delta_{t,N}$

Regret

- Idea
 - N experts named $H = \{h_1, ..., h_N\}$
 - Compare performance of A to best expert i^* in hindsight.
- Regret
 - Overall loss of best expert i^* in hindsight is

$$\Delta_T^* = \min_{i^* \in [1..N]} \sum_{T}^{T} \Delta_{t,i^*}$$

- Loss of algorithm A at time t is

 Δ_{t}

for algorithm that picks recommendation of expert $i = A(w_t)$ at time t.

 Regret is difference between loss of algorithm and best fixed expert in hindsight

$$Regret(T) = \sum_{t=1}^{T} \Delta_{t,A(w_t)} - \min_{i^* \in [1..N]} \sum_{t=1}^{T} \Delta_{t,i^*}$$

Weighted Majority Algorithm

- Setting
 - -N experts named $H = \{h_1, \dots, h_N\}$
 - Binary actions $y = \{+1, -1\}$ given input x, zero/one loss
 - There may be no expert in H that acts perfectly
 - Algorithm
 - Initialize $w_1 = (1,1,...,1)$
 - FOR t = 1 TO T
 - Predict the same y as majority of $h_i \in H$, each weighted by $w_{t,i}$
 - FOREACH h_i ∈ H
 If h i incorrect THEN w_{t+1 i} = w_{t i}
 - $\text{ IF h_i incorrect THEN } w_{t+1,i} = w_{t,i} * \beta$ $\text{ELSE } w_{t+1,i} = w_{t,i}$
- Mistake Bound
 - How close is the number of mistakes the Weighted Majority Algorithm makes to the number of mistakes of the best expert in hindsight?

Exponentiated Gradient Algorithm for Expert Setting (EG)

- Setting
 - -N experts named $H = \{h_1, \dots, h_N\}$
 - Any actions, any loss function
 - There may be no expert in H that acts perfectly
- Algorithm
 - Initialize $w_1 = \left(\frac{1}{N}, \dots, \frac{1}{N}\right)$
 - FOR t from 1 to T
 - Algorithm randomly picks i_t from $P(I_t=i_t)=w_{t,i}$
 - Experts incur losses $\Delta_{t,1} \dots \Delta_{t,N}$
 - Algorithm incurs loss Δ_{t,i_t}
 - Algorithm updates w for all experts i as $\forall i, w_{t+1,i} = w_{t,i} \exp(-\eta \Delta_{t,i})$ Then normalize w_{t+1} so that $\sum_j w_{t+1,j} = 1$.

Expected Regret

- Idea
 - Compare performance to best expert in hindsight
- Regret
 - Overall loss of best expert i^* in hindsight is

$$\Delta_T^* = \min_{i^* \in [1..N]} \sum_{t=1}^T \Delta_{t,i^*}$$

- Expected loss of algorithm $A(w_t)$ at time t is

$$E_{A(w_t)}[\Delta_{t,i}] = w_t \Delta_t$$

for randomized algorithm that picks recommendation of expert i at time t with probability $w_{t,i}. \\$

 Regret is difference between expected loss of algorithm and best fixed expert in hindsight

ExpectedRegret(T) =
$$\sum_{t=1}^{T} w_t \Delta_t - \min_{i^* \in [1..N]} \sum_{t=1}^{T} \Delta_{t,i^*}$$

Regret Bound for Exponentiated **Gradient Algorithm**

Theorem

The expected regret of the exponentiated gradient algorithm in the expert setting is bounded by

Expected $Regret(T) \le \Delta^{\max} \sqrt{2 T \log(|H|)}$

where
$$\Delta^{\max} = \max\{\Delta_{t,i}\}$$
 and $\eta = \frac{\sqrt{\log(N)}}{\Delta\sqrt{2T}}$.

Bandit Learning Model

- Setting
 - -N bandits named $H = \{h_1, ..., h_N\}$
 - Each bandit \mathbf{h}_i takes an action in each round t and incurs
 - Algorithm can select which bandit's action to follow in each round
- Interaction Model
 - FOR t from 1 to T
 - Algorithm selects expert $\boldsymbol{h_i}_t$ according to strategy $\boldsymbol{A_{w_t}}$ and follows its action y
 - Bandits incur losses $\Delta_{t,1}$... $\Delta_{t,N}$
 - Algorithm incurs loss Δ_{t,i_t}
 - Algorithm updates w_t to w_{t+1} based on Δ_{t,i_t}

- - - Algorithm selects expert $\boldsymbol{h_{i}}_{t}$ according to strategy $\boldsymbol{A_{w_{t}}}$ and follows its action y
 - Bandits incur losses $\Delta_{t,1}$... $\Delta_{t,N}$
 - Algorithm incurs loss Δ_{t,i_t}
 - Algorithm updates w_t to w_{t+1} based on Δ_{t,i_t}

Exponentiated Gradient Algorithm for Bandit Setting (EXP3)

- Initialize $w_1 = \left(\frac{1}{N}, ..., \frac{1}{N}\right), \gamma = \min \left\{1, \sqrt{\frac{N \log N}{(e-1)\Delta T}}\right\}$
- FOR t from 1 to T
 - Algorithm randomly picks i_t with probability $P(i_t) = (1-\gamma)w_{t,i} + \gamma/N$
 - Experts (aka Bandits) incur losses $\Delta_{t,1} \dots \Delta_{t,N}$
 - Algorithm incurs loss Δ_{t,i_t}
 - Algorithm updates w for bandit i_t as

 $w_{t+1,i_t} = w_{t,i_t} \exp\left(-\eta \Delta_{t,i_t} / P(i_t)\right)$ Then normalize w_{t+1} so that $\sum_{i} w_{t+1,j} = 1$.

Other Online Learning Problems

- Stochastic Experts
- · Stochastic Bandits
- Online Convex Optimization
- · Partial Monitoring