

Probably Approximately Correct Learning

Definition: C is PAC-learnable by learning algorithm \mathcal{L} using H and a sample S of n examples drawn
i.i.d. from some fixed distribution $P(X)$ and labeled
by a concept $c \in C$, if for sufficiently large n
$P\left(\operatorname{Err}_{P}\left(h_{\mathcal{L}(S)}\right) \leq \epsilon\right) \geq(1-\delta)$
for all $c \in C, c>0, \delta>0$, and $P(X)$. \mathcal{L} is required to run in polynomial time dependent on $1 / \epsilon, 1 / \delta, n$, the size of the training examples, and the size of c

Example: Smart Investing

- Task: Pick stock analyst based on past performance.
- Experiment:
- Review analyst prediction "next day up/down" for past 10 days. Pick analyst that makes the fewest errors.
- Situation 1:
- 2 stock analyst $\{\mathrm{A} 1, \mathrm{~A} 2\}, \mathrm{A} 1$ makes 5 errors
- Situation 2:
- 5 stock analysts $\{\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~B} 3\}, \mathrm{B} 2$ best with 1 error
- Situation 3:
- 1005 stock analysts $\{\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~B} 1, \mathrm{~B} 2, \mathrm{~B} 3, \mathrm{C} 1, \ldots, \mathrm{C} 1000\}$, C543 best with 0 errors
- Question: Which analysts are you most confident in,

A1, B2, or C543?

Useful Formula

Hoeffding/Chernoff Bound:
For any distribution $\mathrm{P}(\mathrm{X})$ where X can take the values 0 and 1, the probability that an average of an i.i.d. sample deviates from its mean p by more than ε is bounded as

Generalization Error Bound: Infinite H, Non-Zero Error

- Setting
- Sample of n labeled instances S
- Learning Algorithm L using a hypothesis space H with VCDim(H)=d
- L returns hypothesis $\hat{h}=L(S)$ with lowest training error
- Definition: The VC-Dimension of H is equal to the maximum number d of examples that can be split into two sets in all $2^{\text {d }}$ ways using functions from H (shattering).
- Given hypothesis space H with $\operatorname{VCDim}(H)$ equal to d and an i.i.d. sample S of size n, with probability (1- δ) it holds that

```
Err
```

