Statistical Learning Theory: Error Bounds and VC-Dimension

CS4780/5780 – Machine Learning Fall 2014

Thorsten Joachims Cornell University

Reading: Mitchell Chapter 7 (not 7.4.4 and 7.5)

Probably Approximately Correct Learning

Definition: C is **PAC-learnable** by learning algorithm \mathcal{L} using H and a sample S of n examples drawn i.i.d. from some fixed distribution P(X) and labeled by a concept $c \in C$, if for sufficiently large n

$$P(Err_P(h_{\mathcal{L}(S)}) \le \epsilon) \ge (1 - \delta)$$

for all $c \in C$, $\epsilon > 0$, $\delta > 0$, and P(X). \mathcal{L} is required to run in polynomial time dependent on $1/\epsilon, 1/\delta, n$, the size of the training examples, and the size of c.

Example: Smart Investing

- Task: Pick stock analyst based on past performance.
- Experiment:
 - Review analyst prediction "next day up/down" for past 10 days. Pick analyst that makes the fewest errors.
 - Situation 1:
 - 2 stock analyst {A1,A2}, A1 makes 5 errors
 - Situation 2:
 - 5 stock analysts {A1,A2,B1,B2,B3}, B2 best with 1 error
 - Situation 3:
 - 1005 stock analysts {A1,A2,B1,B2,B3,C1,...,C1000}, C543 best with 0 errors
- Question: Which analysts are you most confident in, A1, B2, or C543?

Useful Formula

Hoeffding/Chernoff Bound:

For any distribution P(X) where X can take the values 0 and 1, the probability that an average of an i.i.d. sample deviates from its mean p by more than ϵ is bounded as

$$\left| P\left(\left| \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right) - p \right| > \epsilon \right) \le 2e^{-2n\epsilon^2} \right|$$

Generalization Error Bound: Finite H, Non-Zero Error

- Setting
 - Sample of n labeled instances S
 - Learning Algorithm L with a finite hypothesis space H
 - L returns hypothesis $\hat{h}=L(S)$ with lowest training error
- What is the probability that the prediction error of \hat{h} exceeds the fraction of training errors by more than ε ?

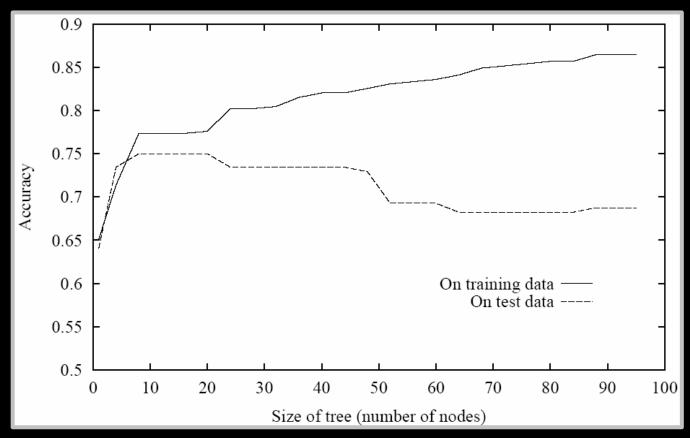
$$P\left(\left|Err_S(h_{\mathcal{L}(S)}) - Err_P(h_{\mathcal{L}(S)})\right| \ge \epsilon\right) \le 2|H|e^{-2\epsilon^2 n}$$

Training Sample
$$S_{train}$$

$$(x_1, y_1), ..., (x_n, y_n)$$
Learner
$$\hat{h}$$

$$(x_{n+1}, y_{n+1}), ...$$

Overfitting vs. Underfitting



With probability at least $(1-\delta)$:

$$Err_P(h_{\mathcal{L}(S_{train})}) \le Err_{S_{train}}(h_{\mathcal{L}(S_{train})}) + \sqrt{\frac{(\ln(2|H|) - \ln(\delta))}{2n}}$$

Generalization Error Bound: Infinite H, Non-Zero Error

- Setting
 - Sample of n labeled instances S
 - Learning Algorithm L using a hypothesis space H with VCDim(H)=d
 - L returns hypothesis $\hat{h}=L(S)$ with lowest training error
- Definition: The VC-Dimension of H is equal to the maximum number d of examples that can be split into two sets in all 2^d ways using functions from H (shattering).
- Given hypothesis space H with VCDim(H) equal to d and an i.i.d. sample S of size n, with probability $(1-\delta)$ it holds that

$$Err_P(h_{\mathcal{L}(S)}) \le Err_S(h_{\mathcal{L}(S)}) + \sqrt{\frac{d\left(\ln\left(\frac{2n}{d}\right) + 1\right) - \ln\left(\frac{\delta}{4}\right)}{n}}$$