

Outline

- Hidden Markov Models
- Viterbi Algorithm
- Estimation with fully observed training data
- Applications: Part-of-speech tagging

Hidden Markov Model

- States: $y \in\left\{s_{1}, \ldots, s_{k}\right\}$
- Outputs symbols: $x \in\left\{o_{1}, \ldots, o_{m}\right\}$

Parameter	
Starting probability	$P\left(Y_{1}=y_{1}\right)$
Transition probability	$P\left(Y_{i}=y_{i} \mid Y_{i-1}=y_{i-1}\right)$
Output/Emission probability	$P\left(X_{i}=x_{i} \mid Y_{i}=y_{i}\right)$

Hidden Markov Model

- Every output/state sequence has a probability

$$
\begin{aligned}
P(x, y) & =P\left(x_{1}, \ldots, x_{l}, y_{1}, \ldots, y_{l}\right) \\
& =P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) \prod_{i=2}^{l} P\left(x_{i} \mid y_{i}\right) P\left(y_{i} \mid y_{i-1}\right)
\end{aligned}
$$

- Different visualizations

Estimating the Probabilities

- Fully observed data:

- Smoothing the estimates:
- See Naïve Bayes for text classification
- Partially observed data (Y_{i} unknown):
- Expectation-Maximization (EM)

HMM Decoding: Viterbi Algorithm

- Question: What is the most likely state sequence given an output sequence

$$
\begin{aligned}
& - \text { Find } y^{*}=\underset{y \in\left\{y_{1}, \ldots, y_{l}\right\}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{l}, y_{1}, \ldots, y_{l}\right) \\
& \quad=\underset{y \in\left\{y_{1}, \ldots, y_{l}\right\}}{\operatorname{argmax}}\left\{P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) \prod_{i=2}^{l} P\left(x_{i} \mid y_{i}\right) P\left(y_{i} \mid y_{i-1}\right)\right\}
\end{aligned}
$$

Going on a trip

- Deal: 3 trips to cities 3 different countries:

Country	City options
Germany	Berlin/Munich/Hamburg
Italy	Rome/Venice/Milan
Spain	Madrid/Barcelona/Malaga

Going on a trip

- Deal: 3 trips to cities 3 different countries:
- Each city i has an attractiveness score $c_{i} \in[0,10]$
- Each flight has an comfort score $f_{i, j} \in[0,10]$
- Find the best trip!

HMM Decoding: Viterbi Algorithm

- Question: What is the most likely state sequence given an output sequence

$$
\begin{aligned}
& - \text { Find } y^{*}=\underset{y \in\left\{y_{1}, \ldots, y_{l}\right\}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{l}, y_{1}, \ldots, y_{l}\right) \\
& =\underset{y \in\left\{y_{1}, \ldots, y_{l}\right\}}{\operatorname{argmax}}\left\{\begin{array}{l}
l
\end{array}\right)
\end{aligned}
$$

- Viterbi algorithm has runtime linear in length of sequence

HMM's for POS Tagging

- Design HMM structure (vanilla)
- States: one state per POS tag
- Transitions: fully connected
- Emissions: all words observed in training corpus
- Estimate probabilities
- Use corpus, e.g. Treebank
- Smoothing
- Unseen words?
- Tagging new sentences
- Use Viterbi to find most likely tag sequence

Experimental Results			
Tagger	Accuracy	Training time	Prediction time
HMM	96.80%	20 sec	18.000 words/s
TBL Rules	96.47%	9 days	750 words/s

- Experiment setup
- WSJ Corpus
- Trigram HMM model
- from [Pla and Molina, 2001]

Discriminative vs. Generative

- Bayes Rule: $\mathrm{h}_{\text {bayes }}(\mathrm{x})=\underset{y \in \mathrm{Y}}{\operatorname{argmax}}[P(Y=y \mid X=x)]$

$$
=\underset{y \in Y}{\operatorname{argmax}}[P(X=x \mid Y=y) P(Y=y)]
$$

- Generative:
- Model $P(X=x \mid Y=y)$ and $P(Y=y)$
- Discriminative:
- Find h in H that best approximates the classifications made by

$$
\mathrm{h}_{\text {bayes }}(\mathrm{x})=\underset{y \in \mathrm{Y}}{\operatorname{argmax}}[P(Y=y \mid X=x)]
$$

- Question: Can we train HMM's discriminately?

