Modeling Sequence Data: HMMs and Viterbi

CS4780/5780 – Machine Learning Fall 2014

Tobias Schnabel and Igor Labutov Cornell University

Reading:

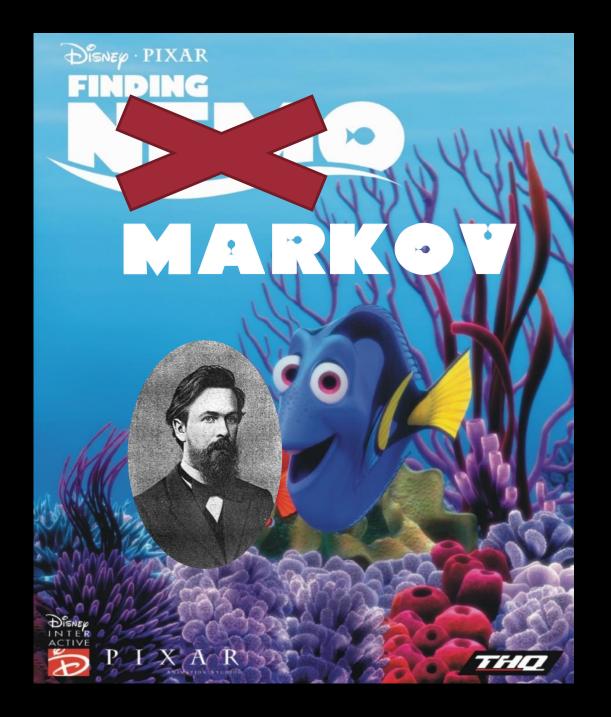
Manning/Schütze, Sections 9.1-9.3 (except 9.3.1)

Leeds Online HMM Tutorial (except Forward and Forward/Backward Algorithm)

(http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html dev/main.html

Outline

- Hidden Markov Models
 - Viterbi Algorithm
 - Estimation with fully observed training data
 - Applications: Part-of-speech tagging



Hidden Markov Model

- States: $y \in \{s_1, ..., s_k\}$
- Outputs symbols: $x \in \{o_1, ..., o_m\}$

Parameter	
Starting probability	$P(Y_1 = y_1)$
Transition probability	$P(Y_i = y_i \mid Y_{i-1} = y_{i-1})$
Output/Emission probability	$P(X_i = x_i \mid Y_i = y_i)$

Hidden Markov Model

Every output/state sequence has a probability

$$P(x,y) = P(x_1, ..., x_l, y_1, ..., y_l)$$

$$= P(y_1)P(x_1|y_1) \prod_{i=2}^{l} P(x_i|y_i)P(y_i|y_{i-1})$$

Different visualizations

Estimating the Probabilities

Fully observed data:

$$P(Y_i = a | Y_{i-1} = b) = \frac{\text{# of times state } a \text{ follows state } b}{\text{# of times state } b \text{ occurs}}$$

$$P(X_i = a | Y_i = b) = \frac{\text{# of times output } a \text{ is observed in state } b}{\text{# of times state } b \text{ occurs}}$$

- Smoothing the estimates:
 - See Naïve Bayes for text classification
- Partially observed data $(Y_i \text{ unknown})$:
 - Expectation-Maximization (EM)

HMM Decoding: Viterbi Algorithm

 Question: What is the most likely state sequence given an output sequence

- Find
$$y^* = \underset{y \in \{y_1, \dots, y_l\}}{\operatorname{argmax}} P(x_1, \dots, x_l, y_1, \dots, y_l)$$

$$= \underset{y \in \{y_1, \dots, y_l\}}{\operatorname{argmax}} \left\{ P(y_1)P(x_1|y_1) \prod_{i=2}^{l} P(x_i|y_i)P(y_i|y_{i-1}) \right\}$$

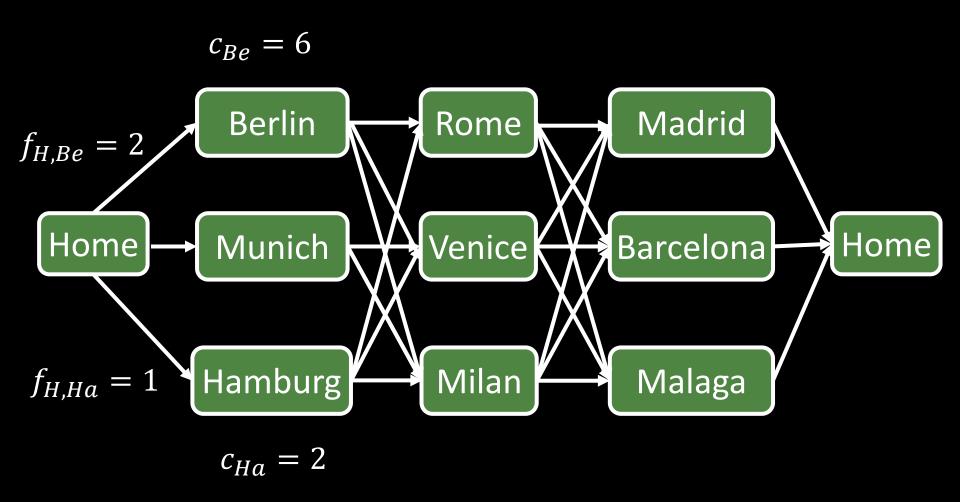
• Deal: 3 trips to cities 3 different countries:

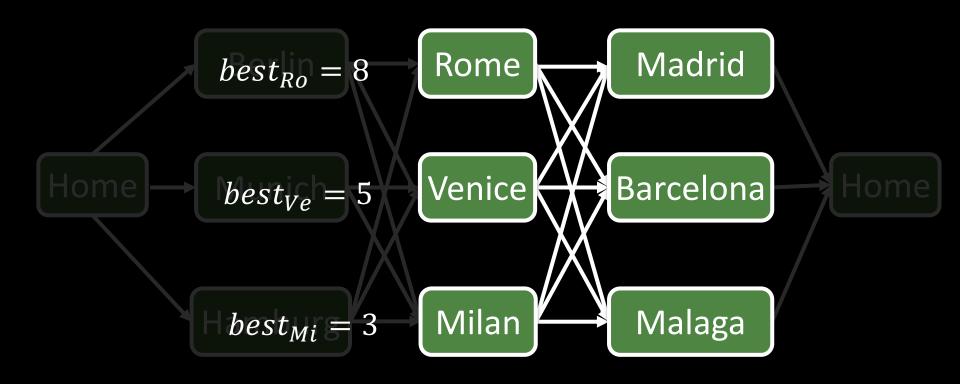
• Deal: 3 trips to cities 3 different countries:

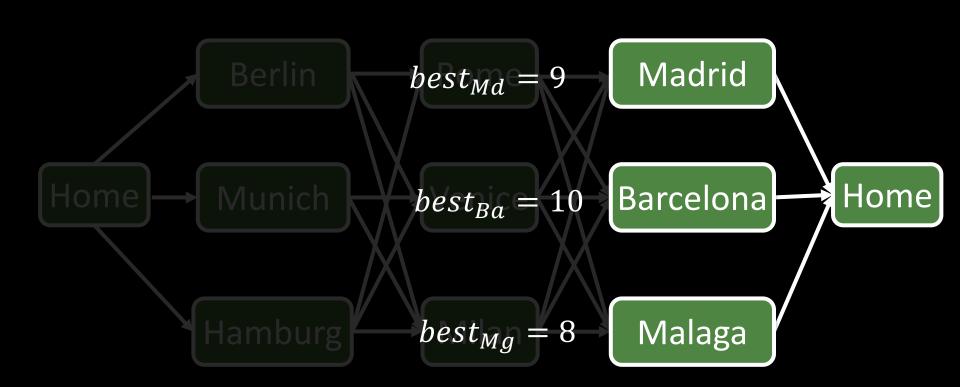
Country	City options
Germany	Berlin/Munich/Hamburg
Italy	Rome/Venice/Milan
Spain	Madrid/Barcelona/Malaga

- Deal: 3 trips to cities 3 different countries:
 - Each city i has an attractiveness score $c_i \in [0, 10]$
 - Each flight has an comfort score $f_{i,j} \in [0, 10]$

Find the best trip!







HMM Decoding: Viterbi Algorithm

 Question: What is the most likely state sequence given an output sequence

- Find
$$y^* = \underset{y \in \{y_1, \dots, y_l\}}{\operatorname{argmax}} P(x_1, \dots, x_l, y_1, \dots, y_l)$$

$$= \underset{y \in \{y_1, \dots, y_l\}}{\operatorname{argmax}} \left\{ P(y_1) P(x_1 | y_1) \prod_{i=2}^{l} P(x_i | y_i) P(y_i | y_{i-1}) \right\}$$

Viterbi algorithm has runtime linear in length of sequence

Viterbi Example

P(X _i Y _i)	A +	В	С
happy	0.6	0.3	0.1
grumpy	0.1	0.4	0.5

P(Y ₁)	
happy	0.7
grumpy	0.3

$P(Y_i Y_{i-1})$	happy	grumpy
happy	0.8	0.2
grumpy	0.3	0.7

What the most likely mood sequence for x = (C, A+, A+)?

HMM's for POS Tagging

- Design HMM structure (vanilla)
 - States: one state per POS tag
 - Transitions: fully connected
 - Emissions: all words observed in training corpus
- Estimate probabilities
 - Use corpus, e.g. Treebank
 - Smoothing
 - Unseen words?
- Tagging new sentences
 - Use Viterbi to find most likely tag sequence

Experimental Results

Tagger	Accuracy	Training time	Prediction time
НММ	96.80%	20 sec	18.000 words/s
TBL Rules	96.47%	9 days	750 words/s

- Experiment setup
 - WSJ Corpus
 - Trigram HMM model
 - from [Pla and Molina, 2001]

Discriminative vs. Generative

• Bayes Rule:
$$h_{\text{bayes}}(x) = \underset{y \in Y}{\operatorname{argmax}} [P(Y = y | X = x)]$$

= $\underset{y \in Y}{\operatorname{argmax}} [P(X = x | Y = y)P(Y = y)]$

- Generative:
 - Model P(X = x | Y = y) and P(Y = y)
- Discriminative:
 - Find h in H that best approximates the classifications made by $h_{\text{bayes}}(\mathbf{x}) = \underset{y \in \mathbf{Y}}{\operatorname{argmax}} \left[P(Y = y | X = x) \right]$
- Question: Can we train HMM's discriminately?