Learning Ranking Functions with SVMs

CS4780/5780 – Machine Learning Fall 2014

> Thorsten Joachims Cornell University

T. Joachims, Optimizing Search Engines Using Clickthrough Data, Proceedings of the ACM Conference on Knowledge Discovery and Data Mining (KDD), ACM, 2002. http://www.cs.cornell.edu/People/tj/publications/joachims_02c.pdf

Adaptive Search Engines

- Traditional Search Engines
 - One-size-fits-all
 - Hand-tuned retrieval function
- Hypothesis
 - Different users need different retrieval functions
 - Different collections need different retrieval functions
- Machine Learning
 - Learn improved retrieval functions
 - User Feedback as training data

Overview

- How can we get training data for learning improved retrieval functions?
 - Explicit vs. implicit feedback
 - Absolute vs. relative feedback
 - User study with eye-tracking and relevance judgments
- What learning algorithms can use this training data?
 - Ranking Support Vector Machine
 - User study with meta-search engine

Sources of Feedback

- Explicit Feedback
 - Overhead for user
- Only few users give feedback
- => not representative
- Implicit Feedback
 - Queries, clicks, time, mousing, scrolling, etc.
 - No Overhead
 - More difficult to interpret

Feedback from Clickthrough Data

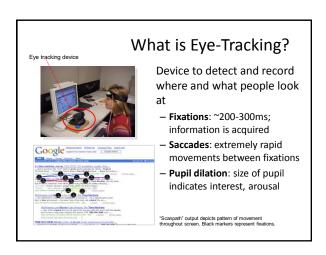
Relative Feedback: Clicks reflect preference between observed links. Absolute Feedback: The clicked links are relevant to the query.

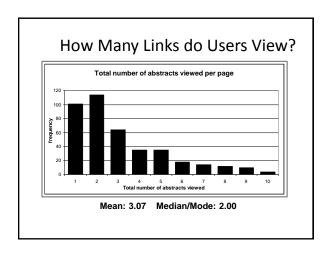
(3 < 2), (7 < 2), (7 < 4), (7 < 5), (7 < 6) 1. Kernel Machines
http://swm.first.gmd.de/
2. Support Vector Machine
http://sbm.first.gmd.de/
3. SVM-Light Support Vector Machine
http://sbm.gmd.de-shortsen/sm.light/
4. An Introduction to Support Vector Machines
http://sws.support-vector.gmd.http://sws.support-vector.gmd.http://sws.support-vector.gmd.http://sws.support-vector.gmd.http://sws.support-vector.gmd.http://sws.support-vector.gmd.http://sws.support-vector.gmd.http://sws.support.gmd.lac.ukilssix/DPDORT...
7. Lucent Technologies: SVM demo applet
http://sws.nescarch.bel.abs.com/SV/TSMsvt.html
8. Royal Holloway Support Vector Machine
http://sws.nescarch.bel.abs.cr.hbm.ac.uk

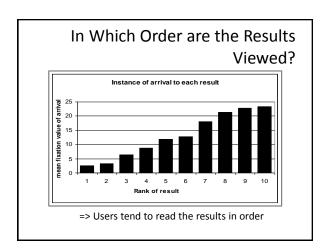
Rel(1), NotRel(2), Rel(3), NotRel(4), NotRel(5), NotRel(6), Rel(7)

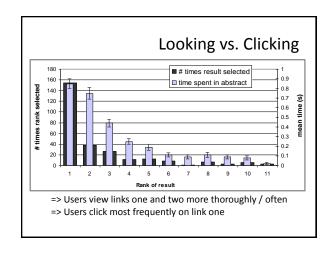
User Study: Eye-Tracking and Relevance

- Scenario
 - WWW search
 - Google search engine
 - Subjects were not restricted
- Answer 10 questions
- Eye-Tracking
 - Record the sequence of eye
 movements
- Analyze how users scan the results page of Google
- Relevance Judgments
 - Ask relevance judges to explicitly judge the relevance of all pages encountered
 - Compare implicit feedback from clicks to explicit judgments

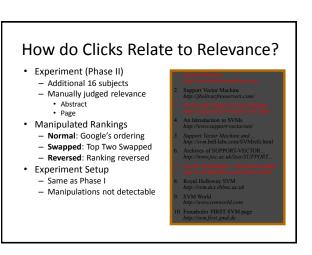








Do Users Look Below the Clicked Link? Viewed Clicked Rank Rank 1 2 3 4 5 6 1 90.6% 76.2% 73.9% 60.0% 54.5% 45.5% 2 56.8% 90.5% 82.6% 53.3% 63.6% 54.5% 3 30.2% 47.6% 95.7% 80.0% 81.8% 45.5% 4 17.3% 19.0% 47.8% 93.3% 63.6% 45.5% 5 8.6% 14.3% 21.7% 53.3% 100.0% 72.7% 6 4.3% 4.8% 8.7% 33.3% 18.2% 81.8% => Users typically do not look at links below before they click (except maybe the next link)



Presentation Bias

Hypothesis: Order of presentation influences where users look, but not where they click!

"normal"	$ _{1}^{-}, _{2}^{-}$	$ 1_1^+, 1_2^- $	$ 1_1^-, 1_2^+ $	$ 1_{1}^{+}, 2_{2}^{+} $	total
$rel(l_1) > rel(l_2)$	15	19	1	1	36
$rel(l_1) < rel(l_2)$	11	5	2	2	20
$rel(l_1) = rel(l_2)$	19	9	1	0	29
total	45	33	4	3	85
"swapped"	$ _{1}^{-}, _{2}^{-}$	$ 1_1^+, 1_2^- $	$ 1_1^-, 1_2^+ $	$ _{1}^{+}, _{2}^{+}$	total
$rel(l_1) > rel(l_2)$	11	1.5	1	1	28
	11	13			20
$rel(l_1) > rel(l_2)$ $rel(l_1) < rel(l_2)$	17	10	7	2	36
\ 1/			7 3	2	

Quality-of-Context Bias

Hypothesis: Clicking depends only on the link itself, but not on other links.

	Rank of clicked link as sorted by relevance judges
Normal + Swapped	2.67
Reversed	3.27

=> Users click on less relevant links, if they are embedded between irrelevant links.

Are Clicks Absolute Relevance Judgments?

- Clicks depend not only on relevance of a link, but also
 - On the position in which the link was presented
 - The quality of the other links
- => Interpreting Clicks as absolute feedback extremely difficult!

Strategies for Generating Relative Feedback

Strategies

- "Click > Skip Above"
 (3>2), (5>2), (5>4)
- "Last Click > Skip Above"
 (5>2), (5>4)
- "Click > Earlier Click"
 (3>1), (5>1), (5>3)
- "Click > Skip Previous"– (3>2), (5>4)
- "Click > Skip Next"
 (1>2), (3>4), (5>6)

1. Kernel Machines. http://www.kernel-machines.org/ 2. Support Vector Machine http://jbollour/freeservers.com/ 3. SVM-Light Support Vector Machine http://www.support-vector.net/ 4. An Introduction to SVMs http://www.support-vector.net/ 5. Support Vector Machine and. http://www.support-vector.net/ 6. Archives of SUPPORT-VECTOR. http://www.bell-labs.com/SVMset.html 6. Archives of SUPPORT-VECTOR. http://www.bell-labs.com/SVMset.html 7. Lucent Technologies: SVM demo applet http://swm.bell-labs.com/SVMset.html 8. Royal Holloway SVM http://swm.des.rhbn.ac.uk 9. SVM World http://swa.ac.uk/mset.html http://swa.ac.u

Fraunhofer FIRST SVM page http://svm.first.gmd.de

Comparison with Explicit Feedback

Explicit Feedback	Abstracts
Data	Phase I
Strategy	"normal"
Inter-Judge Agreement	89.5
Click > Skip Above	80.8 ± 3.6
Last Click > Skip Above	83.1 ± 3.8
Click > Earlier Click	67.2 ± 12.3
Click > Skip Previous	82.3 ± 7.3
Click > No Click Next	84.1 ± 4.9

=> All but "Click > Earlier Click" appear accurate

Is Relative Feedback Affected by Bias?

Explicit Feedback		Abstracts	
Data	Phase II		
Strategy	"normal"	"swapped"	"reversed"
Click > Skip Above	88.0 ± 9.5	79.6 ± 8.9	83.0 ± 6.7
Last Click > Skip Above	89.7 ± 9.8	77.9 ± 9.9	84.6 ± 6.9
Click > Earlier Click	75.0 ± 25.8	36.8 ± 22.9	28.6 ± 27.5
Click > Skip Previous	88.9 ± 24.1	80.0 ± 18.0	79.5 ± 15.4
Click > No Click Next	75.6 ± 14.5	66.7 ± 13.1	70.0 ± 15.7

⇒Significantly better than random in all conditions, except "Click > Earlier Click"

How Well Do Users Judge Relevance Based on Abstract?

Explicit Feedback	Abstracts	Pages
Data	Pha	se II
Strategy	all	all
Inter-Judge Agreement	82.5	86.4
Click > Skip Above	83.1 ± 4.4	78.2 ± 5.6
Last Click > Skip Above	83.8 ± 4.6	80.9 ± 5.1
Click > Earlier Click	46.9 ±13.9	64.3 ±15.4
Click > Skip Previous	81.6 ± 9.5	80.7 ± 9.6
Click > No Click Next	70.4 ± 8.0	67.4 ± 8.2

⇒clicks based on abstracts reflect relevance of the page well

Learning Retrieval Functions from Pairwise Preferences

- Idea: Learn a ranking function, so that number of violated pair-wise training preferences is minimized.
- · Form of Ranking Function: sort by

```
U(q,d_i) = w_1 * (\#of query words in title of d_i) 
 + w_2 * (\#of query words in anchor) 
 + ... 
 + w_n * (page-rank of d_i) 
 = w * <math>\Phi(q,d_i)
```

· Training: Select w so that

 $\label{eq:continuous} \begin{array}{c} \text{if user prefers } d_i \text{ to } d_i \text{ for query } q, \\ \text{then} \\ & \text{U}(q,d_i) > \text{U}(q,d_i) \end{array}$

Ranking Support Vector Machine

• Find ranking function with low error and large margin

$$\min \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i,j,k} \xi_{kij}$$
s.t.
$$\vec{w} \cdot \Phi(q_1, d_i) \ge \vec{w} \cdot \Phi(q_1, d_j) + 1 - \xi_{1ij}$$

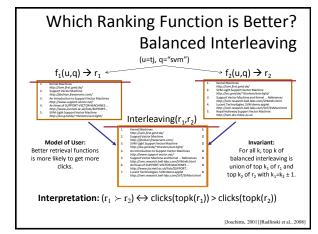
$$\cdots$$

$$\vec{w} \cdot \Phi(q_n, d_i) \ge \vec{w} \cdot \Phi(q_n, d_j) + 1 - \xi_{nij}$$

- Properties
 - Convex quadratic program
 - Non-linear functions using Kernels
 - Implemented as part of SVM-light
 - http://svmlight.joachims.org

Experiment

- · Meta-Search Engine "Striver"
 - Implemented meta-search engine on top of Google, MSNSearch, Altavista, Hotbot, Excite
 - Retrieve top 100 results from each search engine
 - Re-rank results with learned ranking functions
- · Experiment Setup
 - User study on group of ~20 German machine learning researchers and students
 - => homogeneous group of users
 - Asked users to use the system like any other search engine
 - Train ranking SVM on 3 weeks of clickthrough data
 - Test on 2 following weeks



Results

Ranking A	Ranking B	A better	B better	Tie	Total
Learned	Google	29	13	27	69
Learned	MSNSearch	18	4	7	29
Learned	Toprank	21	9	11	41

Result:

- Learned > Google
- Learned > MSNSearch
- Learned > Toprank

Toprank: rank by increasing minimum rank over all 5 search engines

Learned Weights

:	Weight 0.60 0.48 0.24	Feature cosine between query and abstract ranked in top 10 from Google cosine between query and the words in the URL
:	0.24	doc ranked at rank 1 by exactly one of the 5 engines
:	0.22	host has the name "citeseer"
:	0.17 0.16	country code of URL is ".de" ranked top 1 by HotBot
:	-0.15	country code of URL is ".fi"
•	-0.17	length of URL in characters
:	-0.32 -0.38	not ranked in top 10 by any of the 5 search engines not ranked top 1 by any of the 5 search engines

Conclusions

- Clickthrough data can provide accurate feedback
 - Clickthrough provides relative instead of absolute judgments
- Ranking SVM can learn effectively from relative preferences
 - Improved retrieval through personalization in meta search
- Current and future work
 - Exploiting query chains
 - Other implicit feedback signals
 - Adapting intranet search for ArXiv.org
 - Recommendation
 - Robustness to "click-spam"
 - Learning and micro-economic theory for interactive learning with preference
 - Further user studies to get better models of user behavior

