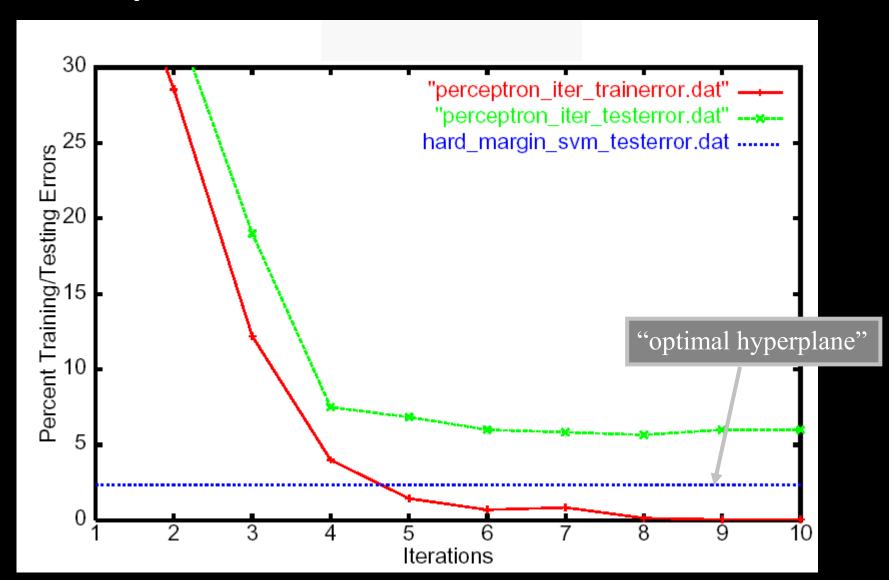
Support Vector Machines: Optimal Hyperplanes

CS4780/5780 – Machine Learning Fall 2014

Thorsten Joachims Cornell University

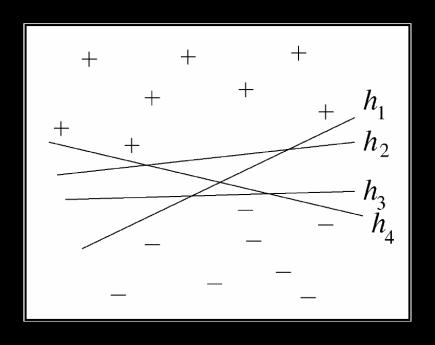
Reading: Schoelkopf/Smola Chapter 7.1-7.3, 7.5 (excluding crossed out sections)

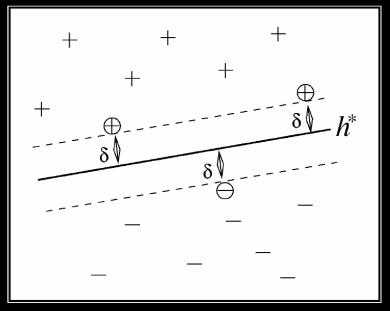
Example: Reuters Text Classification



Optimal Hyperplanes

- Assumption:
 - Training examples are linearly separable.





Margin of a Linear Classifier

Definition: For a linear classifier h_w , the margin δ of an example (\vec{x}, y) with $\vec{x} \in \mathbb{R}^N$ and $y \in \{-1, +1\}$ is $\delta = y(\vec{w} \cdot \vec{x})$.

Definition: The margin is called geometric margin, if $||\vec{w}|| = 1$. For general \vec{w} , the term functional margin is used to indicate that the norm of \vec{w} is not necessarily 1.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a sample S is $\delta = min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x})$.

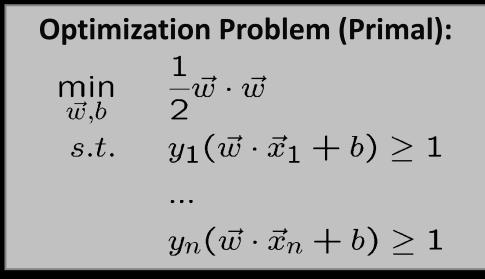
Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a task P(X,Y) is $\delta = inf_{S \sim P(X,Y)} min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x}).$

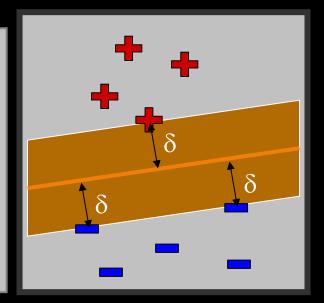
Hard-Margin Separation

Goal:

Find hyperplane with the largest distance to the

closest training examples.

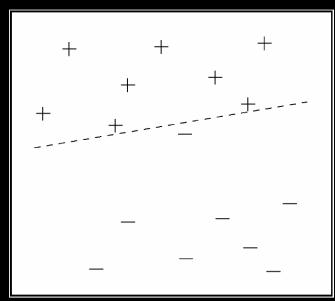




- Support Vectors:
 - Examples with minimal distance (i.e. margin).

Non-Separable Training Data

- Limitations of hard-margin formulation
 - For some training data, there is no separating hyperplane.
 - Complete separation (i.e. zero training error) can lead to suboptimal prediction error.



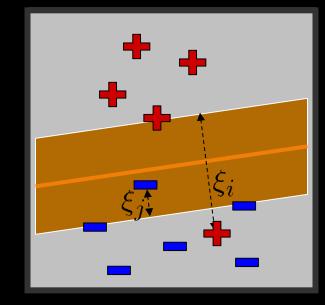
Soft-Margin Separation

Idea: Maximize margin and minimize training

Hard-Margin OP (Primal): $\lim_{ec{w},b} \frac{1}{2} \vec{w} \cdot \vec{w}$ s.t. $y_1(\vec{w} \cdot \vec{x}_1 + b) \geq 1$ \dots $y_n(\vec{w} \cdot \vec{x}_n + b) \geq 1$

```
Soft-Margin OP (Primal): \min_{\vec{w}, \vec{\xi}, b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{s} \xi_i s.t. y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 - \xi_1 \land \xi_1 \ge 0 \cdots y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1 - \xi_n \land \xi_n \ge 0
```

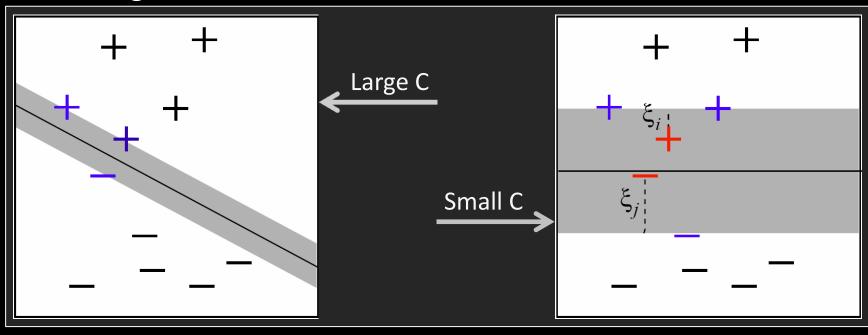
- Slack variable ξ_i measures by how much (x_i, y_i) fails to achieve margin δ
- $\Sigma \xi_i$ is upper bound on number of training errors
- *C* is a parameter that controls tradeoff between margin and training error.



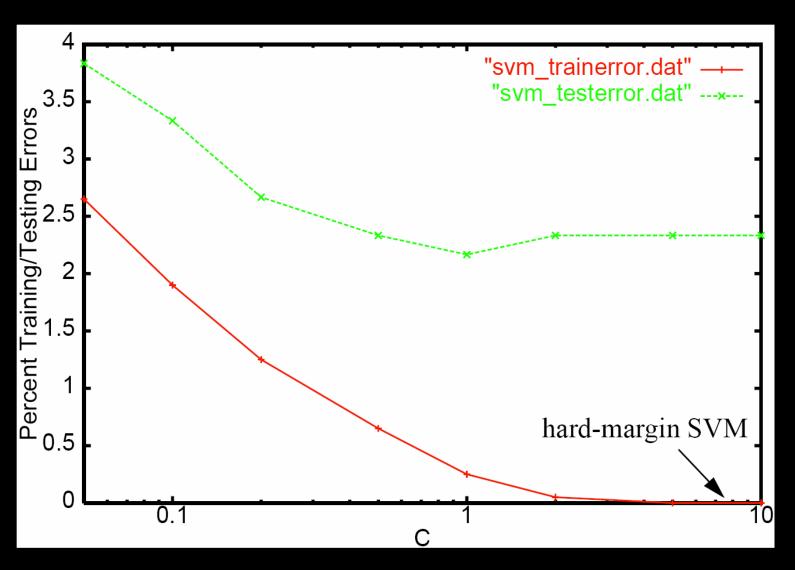
Controlling Soft-Margin Separation

- $\Sigma \xi_i$ is upper bound on number of training errors
- C is a parameter that controls trade-off between margin and training error.

Soft-Margin OP (Primal):
$$\min_{\vec{w}, \vec{\xi}, b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
 $s.t.$ $y_1(\vec{w} \cdot \vec{x}_1 + b) \geq 1 - \xi_1 \wedge \xi_1 \geq 0$...
$$y_n(\vec{w} \cdot \vec{x}_n + b) \geq 1 - \xi_n \wedge \xi_n \geq 0$$



Example Reuters "acq": Varying C



Example: Margin in High-Dimension

Training	$ec{x}$							y
Sample S _{train}	x_{I}	x_2	x_3	x_4	x_5	x_6	x_7	
(\vec{x}_1, y_1)	1	0	0	1	0	0	0	1
(\vec{x}_2, y_2)	1	0	0	0	1	0	0	1
(\vec{x}_3, y_3)	0	1	0	0	0	1	0	-1
(\vec{x}_4, y_4)	0	1	0	0	0	0	1	-1
	$ec{w}$							b
	w_1	w_2	w_3	w_4	w_5	w_6	w_7	
Hyperplane 1	1	1	0	0	0	0	0	2
Hyperplane 2	0	0	0	1	1	-1	-1	0
Hyperplane 3	1	-1	1	0	0	0	0	0
Hyperplane 4	0.5	-0.5	0	0	0	0	0	0
Hyperplane 5	1	-1	0	0	0	0	0	0
Hyperplane 6	0.95	-0.95	0	0.05	0.05	-0.05	-0.05	0
Hyperplane 7	0.67	-0.67	0	0.33	0.33	-0.33	-0.33	0